Publications by authors named "Takehiro Terashita"

Conclusion: An 18-mer peptide derived from the neurotrophic region of prosaposin (PS-pep) prevents hearing loss and cochlear damage due to transient cochlear ischaemia by activating an anti-apoptotic pathway. PS-pep is a potent candidate molecule for alleviating ischaemia-induced hearing loss.

Objective: PS-pep was investigated for its protective effects against ischaemia-induced hearing loss and cochlear damage.

View Article and Find Full Text PDF

Prosaposin acts as a neurotrophic factor, in addition to its role as the precursor protein for saposins A, B, C, and D, which are activators for specific sphingolipid hydrolases in lysosomes. In rats, the prosaposin gene generates two alternative splicing forms of mRNA: Pro+9 containing a 9-base insertion and Pro+0 without. The expression of these mRNAs changes after brain injury.

View Article and Find Full Text PDF

Prosaposin is the precursor of four sphingolipid activator proteins (saposins A, B, C, and D) for lysosomal hydrolases and is abundant in the nervous system and muscle. In addition to its role as a precursor of saposins in lysosomes, intact prosaposin has neurotrophic effects in vivo or in vitro when supplied exogenously. We examined the distribution of prosaposin in the central and peripheral nervous systems and its intracellular distribution.

View Article and Find Full Text PDF

Intercellular adhesions between renal glomerular epithelial cells (also called podocytes) are necessary for the proper function of the glomerular filtration barrier. Although our knowledge of the molecular composition of podocyte cell-cell contact sites has greatly progressed, the underlying molecular mechanism regulating the formation of these cell-cell contacts remains largely unknown. We have used forskolin, an activator of adenylyl cyclase that elevates the level of intracellular cAMP, to investigate the effect of cAMP and three Rho-family small GTPases (RhoA, Cdc42, and Rac1) on the regulation of cell-cell contact formation in a murine podocyte cell line.

View Article and Find Full Text PDF

Prosaposin, the precursor of the sphingolipid hydrolase activator proteins called saposins A, B, C, and D, is abundant in the nervous system and muscles. Besides its role as the precursor of saposins, prosaposin is reported to function as a neurotrophic factor, initiating neural differentiation and preventing neuronal cell death in vivo and in vitro. In this study, we examined the localization and synthesis of prosaposin in the rat cochlea.

View Article and Find Full Text PDF

The first event occurring at the boundary between a metal implant and living tissue is the attachment of cells onto the metal surface of the implant. The attachment characteristics of the metal in this situation are critical in determining its biocompatibility and usefulness as artificial bone and tooth implants. Using the human osteosarcoma cell line Saos-2, we attempted to establish simple and reliable methods for evaluating the attachment of cultured osteoblastic cells onto titanium samples that had been subjected to various surface treatments.

View Article and Find Full Text PDF

Cajal's initial glomeruli (IG) and Dogiel's pericellular nests (PCNs) were first described from methylene blue preparations of healthy animal tissues around the beginning of the last century. Since that time, although many reports have been published concerning these structures, few have focused on their development and phylogeny in healthy animals. The aim of this study was to examine the phylogenetic development of the sensory neurons in Cajal's IG (also called axonal glomeruli) and Dogiel's PCNs in the dorsal root ganglion (DRG) of the healthy adult frog, chick, rat, and rabbit.

View Article and Find Full Text PDF

In the developing central nervous system, apoptosis plays an important role in the normal organization of the neuronal circuit. The timing of neurogenesis, proliferation, and migration of the neurons in the developing olfactory bulb (OB) is well studied; however, the involvement of apoptosis in this process is not fully understood. In this study, we examined the changes in the distribution and the number of apoptotic cells in the rat OB during embryonic and postnatal periods, by using terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling (TUNEL) staining.

View Article and Find Full Text PDF

Background: Podocytes, renal glomerular visceral epithelial cells, have two kinds of processes, namely major processes containing microtubules (MTs) and foot processes with actin filaments (AFs). The present study investigated how MTs are organized by the Rho-ROCK signal transduction pathway during process formation of podocytes.

Method: After induction of differentiation, podocytes of the conditionally immortalized mouse cell line were treated with Y-27632, a specific inhibitor of ROCK, and exoenzyme C3, an inhibitor of RhoA, as well as with forskolin whose effects include inhibition of RhoA, in order to inhibit the Rho-ROCK pathway.

View Article and Find Full Text PDF

The renal glomerular podocyte exhibits a highly arborized morphology. In comparison with the neuron, which is the best studied process-bearing cell, the podocyte major processes share many cell biological characteristics with neuronal dendrites. Both podocytes and neurons develop microtubule-based thick processes with branching morphology and both have thin actin-based projections (i.

View Article and Find Full Text PDF