In this study, figure correction of a master mandrel of a Wolter mirror by organic abrasive machining (OAM) was demonstrated. In OAM, a flow of slurry, dispersed with organic particles, locally removes the surface of a workpiece in contact with a rotating machining tool. A computer-controlled machining system was used to perform the selective removal of a fused silica surface at a spatial resolution of 200 µm.
View Article and Find Full Text PDFA soft X-ray ptychography system using a Wolter mirror for the illumination optics has been developed. By taking advantage of the achromaticity of the optics, the system is capable of seamlessly imaging at half-period resolution of 50 nm with a broad photon-energy range from 250 eV to 2 keV while maintaining the focal position. Imaging a mammalian cell at various wavelengths was demonstrated, and high-resolution visualization of organelle was achieved.
View Article and Find Full Text PDFWe developed a copper electroforming replication (CER) process to fabricate precise ellipsoidal mirrors for soft x-ray focusing. Some applications of ellipsoidal mirrors in x-ray microscopy require that all components that are close to samples, including the mirrors, are made of non-magnetic materials. In this study, a non-magnetic copper ellipsoidal mirror was fabricated by replicating a figured and super-polished quartz glass mandrel using an electroforming technique.
View Article and Find Full Text PDFWe developed a full-field microscope with twin Wolter mirrors for soft X-ray free-electron lasers. The Wolter mirrors for a condenser and an objective were fabricated using an electroforming process with a precisely figured master mandrel. In the imaging system constructed at SACLA BL1, sub-micrometer spatial resolution was achieved at wavelengths of 10.
View Article and Find Full Text PDFIntense sub-micrometre focusing of a soft X-ray free-electron laser (FEL) was achieved by using an ellipsoidal mirror with a high numerical aperture. A hybrid focusing system in combination with a Kirkpatrick-Baez mirror was applied for compensation of a small spatial acceptance of the ellipsoidal mirror. With this system, the soft X-ray FEL pulses were focused down to 480 nm × 680 nm with an extremely high intensity of 8.
View Article and Find Full Text PDFRev Sci Instrum
September 2018