We collected 3180 records of oleic acid (C18:1) and monounsaturated fatty acid (MUFA) measured using gas chromatography (GC) and 6960 records of C18:1 and MUFA measured using near-infrared spectroscopy (NIRS) in intermuscular fat samples of Japanese Black cattle. We compared genomic prediction performance for four linear models (genomic best linear unbiased prediction [GBLUP], kinship-adjusted multiple loci [KAML], BayesC, and BayesLASSO) and five machine learning models (Gaussian kernel [GK], deep kernel [DK], random forest [RF], extreme gradient boost [XGB], and convolutional neural network [CNN]). For GC-based C18:1 and MUFA, KAML showed the highest accuracies, followed by BayesC, XGB, DK, GK, and BayesLASSO, with more than 6% gain of accuracy by KAML over GBLUP.
View Article and Find Full Text PDFBackground: Size of reference population is a crucial factor affecting the accuracy of prediction of the genomic estimated breeding value (GEBV). There are few studies in beef cattle that have compared accuracies achieved using real data to that achieved with simulated data and deterministic predictions. Thus, extent to which traits of interest affect accuracy of genomic prediction in Japanese Black cattle remains obscure.
View Article and Find Full Text PDF