Purpose: The prevalence of type 2 diabetes mellitus (T2DM) has been steadily increasing over the years. We aim to predict the occurrence of T2DM using mammography images within 5 years using two different methods and compare their performance.
Approach: We examined 312 samples, including 110 positive cases (developed T2DM after 5 years) and 202 negative cases (did not develop T2DM) using two different methods.
A general-purpose method of emphasizing abnormal lesions in chest radiographs, named EGGPALE (Extrapolative, Generative and General-Purpose Abnormal Lesion Emphasizer), is presented. The proposed EGGPALE method is composed of a flow-based generative model and L-infinity-distance-based extrapolation in a latent space. The flow-based model is trained using only normal chest radiographs, and an invertible mapping function from the image space to the latent space is determined.
View Article and Find Full Text PDFIn this study, we investigated the application of distributed learning, including federated learning and cyclical weight transfer, in the development of computer-aided detection (CADe) software for (1) cerebral aneurysm detection in magnetic resonance (MR) angiography images and (2) brain metastasis detection in brain contrast-enhanced MR images. We used datasets collected from various institutions, scanner vendors, and magnetic field strengths for each target CADe software. We compared the performance of multiple strategies, including a centralized strategy, in which software development is conducted at a development institution after collecting de-identified data from multiple institutions.
View Article and Find Full Text PDFBackground And Purpose: The rise of large language models such as generative pretrained transformers (GPTs) has sparked considerable interest in radiology, especially in interpreting radiologic reports and image findings. While existing research has focused on GPTs estimating diagnoses from radiologic descriptions, exploring alternative diagnostic information sources is also crucial. This study introduces the use of GPTs (GPT-3.
View Article and Find Full Text PDFPurpose: The quality and bias of annotations by annotators (e.g., radiologists) affect the performance changes in computer-aided detection (CAD) software using machine learning.
View Article and Find Full Text PDFObjectives: To investigate the relationship between low kidney volume and subsequent estimated glomerular filtration rate (eGFR) decline in eGFR category G2 (60-89 mL/min/1.73 m) population.
Methods: In this retrospective study, we evaluated 5531 individuals with eGFR category G2 who underwent medical checkups at our institution between November 2006 and October 2017.
Purpose: The purpose of this study was to investigate the longitudinal MRI characteristic of COVID-19-vaccination-related axillary lymphadenopathy by evaluating the size, T2-weighted signal intensity, and apparent diffusion coefficient (ADC) values.
Methods: COVID-19-vaccination-related axillary lymphadenopathy was observed in 90 of 433 health screening program participants on the chest region of whole-body axial MRIs in 2021, as reported in our previous study. Follow-up MRI was performed at an interval of approximately 1 year after the second vaccination dose from 2022 to 2023.
Purpose: Standardized uptake values (SUVs) derived from F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography are a crucial parameter for identifying tumors or abnormalities in an organ. Moreover, exploring ways to improve the identification of tumors or abnormalities using a statistical measurement tool is important in clinical research. Therefore, we developed a fully automatic method to create a personally normalized Z-score map of the liver SUV.
View Article and Find Full Text PDFMammography images contain a lot of information about not only the mammary glands but also the skin, adipose tissue, and stroma, which may reflect the risk of developing breast cancer. We aimed to establish a method to predict breast cancer risk using radiomics features of mammography images and to enable further examinations and prophylactic treatment to reduce breast cancer mortality. We used mammography images of 4000 women with breast cancer and 1000 healthy women from the 'starting point set' of the OPTIMAM dataset, a public dataset.
View Article and Find Full Text PDFThe purpose of the study was to develop a liver nodule diagnostic method that accurately localizes and classifies focal liver lesions and identifies the specific liver segments in which they reside by integrating a liver segment division algorithm using a four-dimensional (4D) fully convolutional residual network (FC-ResNet) with a localization and classification model. We retrospectively collected data and divided 106 gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance examinations into Case-sets 1, 2, and 3. A liver segment division algorithm was developed using a 4D FC-ResNet and trained with semi-automatically created silver-standard annotations; performance was evaluated using manually created gold-standard annotations by calculating the Dice scores for each liver segment.
View Article and Find Full Text PDFImportance: Characterizing longitudinal patterns of regional brain volume changes in a population with normal cognition at the individual level could improve understanding of the brain aging process and may aid in the prevention of age-related neurodegenerative diseases.
Objective: To investigate age-related trajectories of the volumes and volume change rates of brain structures in participants without dementia.
Design, Setting, And Participants: This cohort study was conducted from November 1, 2006, to April 30, 2021, at a single academic health-checkup center among 653 individuals who participated in a health screening program with more than 10 years of serial visits.
The purpose of this study was to realize an automated volume measurement of abdominal adipose tissue from the entire abdominal cavity in Dixon magnetic resonance (MR) images using deep learning. Our algorithm involves a combination of extraction of the abdominal cavity and body trunk regions using deep learning and extraction of a fat region based on automatic thresholding. To evaluate the proposed method, we calculated the Dice coefficient (DC) between the extracted regions using deep learning and labeled images.
View Article and Find Full Text PDFBackground COVID-19 vaccination-related axillary lymphadenopathy has become an important problem in cancer imaging. Data are needed to update or support imaging guidelines for conducting appropriate follow-up. Purpose To investigate the prevalence, predisposing factors, and MRI characteristics of COVID-19 vaccination-related axillary lymphadenopathy.
View Article and Find Full Text PDFPurpose: The three-dimensional (3D) voxel labeling of lesions requires significant radiologists' effort in the development of computer-aided detection software. To reduce the time required for the 3D voxel labeling, we aimed to develop a generalized semiautomatic segmentation method based on deep learning via a data augmentation-based domain generalization framework. In this study, we investigated whether a generalized semiautomatic segmentation model trained using two types of lesion can segment previously unseen types of lesion.
View Article and Find Full Text PDFBackground: It is essential for radiologists to communicate actionable findings to the referring clinicians reliably. Natural language processing (NLP) has been shown to help identify free-text radiology reports including actionable findings. However, the application of recent deep learning techniques to radiology reports, which can improve the detection performance, has not been thoroughly examined.
View Article and Find Full Text PDFPurpose: The performance of computer-aided detection (CAD) software depends on the quality and quantity of the dataset used for machine learning. If the data characteristics in development and practical use are different, the performance of CAD software degrades. In this study, we investigated changes in detection performance due to differences in training data for cerebral aneurysm detection software in head magnetic resonance angiography images.
View Article and Find Full Text PDFPurpose: Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) has high diagnostic accuracy in the detection of liver lesions. There is a demand for computer-aided detection/diagnosis software for Gd-EOB-DTPA-enhanced MRI. We propose a deep learning-based method using one three-dimensional fully convolutional residual network (3D FC-ResNet) for liver segmentation and another 3D FC-ResNet for simultaneous detection and classification of a focal liver lesion in Gd-EOB-DTPA-enhanced MRI.
View Article and Find Full Text PDF