Traditional optimization methods using one variable at a time approach waste time and chemicals and assume that different parameters are independent from one another. Hence, a simpler, more practical, and rapid process for predicting reaction conditions that can be applied to several manufacturing environmentally sustainable processes is highly desirable. In this study, biaryl compounds were synthesized efficiently using an organic Brønsted acid catalyst in a flow system.
View Article and Find Full Text PDFNoise is ubiquitous in real space that hinders detection of minute yet important signals in electrical sensors. Here, the authors report on a deep learning approach for denoising ionic current in resistive pulse sensing. Electrophoretically-driven translocation motions of single-nanoparticles in a nano-corrugated nanopore are detected.
View Article and Find Full Text PDFCorrection for 'Exploration of flow reaction conditions using machine-learning for enantioselective organocatalyzed Rauhut-Currier and [3+2] annulation sequence' by Masaru Kondo et al., Chem. Commun.
View Article and Find Full Text PDFA highly atom-economical enantioselective organocatalyzed Rauhut-Currier and [3+2] annulation sequence has been established by using a flow system. Suitable flow conditions were explored through reaction screening of multiple parameters using machine learning. Eventually, functionalized chiral spirooxindole analogues were obtained in high yield with good ee as a single diastereomer within one minute.
View Article and Find Full Text PDF