Publications by authors named "Takayuki Sugito"

This study investigated the effect of bone regeneration with dental pulp stem cells (DPSCs), deciduous tooth stem cells (DTSCs), or bone-marrow-derived mesenchymal stem cells (BMMSCs) for clinical study on hydroxyapatite-coated osseointegrated dental implants, using tissue engineering technology. In vitro, human DPSCs and DTSCs expressed STRO-1, CD13, CD29, CD 44, CD73, and osteogenic marker genes such as alkaline phosphatase, Runx2, and osteocalcin. In vivo, prepared bone defect model was implanted using graft materials as follows: platelet-rich plasma (PRP), PRP and canine BMMSCs (cBMMSCs), PRP and canine DPSCs (cDPSCs), PRP and puppy DTSCs (pDTSCs), and control (defect only).

View Article and Find Full Text PDF

Introduction: Mesenchymal stem cells (MSCs) have been used for clinical application in tissue engineering and regenerative medicine (TERM). To date, the most common source of MSCs has been bone marrow. However, the bone marrow aspirate is an invasive and painful procedure for the donor.

View Article and Find Full Text PDF

Purpose: The study aims to evaluate if human keratinocyte growth factor (hKGF), secreted after transduction of murine salivary glands with adenoviral vectors, can prevent oral mucositis resulting from radiation.

Experimental Design: Two serotype 5 adenoviral vectors encoding hKGF were constructed: AdEF1alpha-hKGF and AdLTR(2)EF1alpha-hKGF. Female C3H mice, 8 weeks old, were irradiated by single (22.

View Article and Find Full Text PDF

There is no satisfactory conventional treatment for patients who experience irreversible salivary gland damage after therapeutic radiation for head and neck cancer or because of Sjögren's syndrome. Additionally, if most parenchyma is lost, these patients also are not candidates for evolving gene transfer strategies. To help such patients, several years ago we began to develop an artificial salivary gland.

View Article and Find Full Text PDF

Salivary glands have proven to be unusual but valuable target sites for multiple clinical gene transfer applications. Access to salivary glands for gene transfer is easy. Multiple studies in animal models have yielded proofs of concept for novel treatments for damaged salivary glands following therapeutic irraditation, in Sjögren's syndrome, and for gene therapeutics systemically by way of the blood-stream and locally in the oral cavity and upper gastrointestinal tract.

View Article and Find Full Text PDF