Pre-mRNA splicing is an indispensable mechanism for eukaryotic gene expression. Splicing inhibition causes cell cycle arrest at the G and G/M phases, and this is thought to be one of the reasons for the potent antitumor activity of splicing inhibitors. However, the molecular mechanisms underlying the cell cycle arrest have many unknown aspects.
View Article and Find Full Text PDFPotent anti-cancer compounds FR901464 and its methyl-ketal derivative spliceostatin A (SSA) inhibit cell cycle progression at G1 and G2/M phases. These compounds bind to the spliceosome and inhibit the splicing reaction. However, the molecular mechanism underlying G1 arrest after SSA treatment remains unknown.
View Article and Find Full Text PDFIn eukaryotes, pre-mRNA splicing is an essential step for gene expression. We have been analyzing post-splicing intron turnover steps in higher eukaryotes. Here, we report protein interaction between human Debranching enzyme 1 (hDbr1) and several factors found in the Intron Large (IL) complex, which is an intermediate complex of the intron degradation pathway.
View Article and Find Full Text PDFPre-mRNA in eukaryotes is subjected to mRNA processing, which includes capping, polyadenylation, and splicing. Transcription and mRNA processing are coupled, and this coupling stimulates mRNA processing; however, the effects of mRNA processing on transcription are not fully understood. In this study, we found that inhibition of U2 snRNP by a splicing inhibitor, spliceostatin A (SSA), or by an antisense oligonucleotide to U2 snRNA, caused gene-specific 3'-end down-regulation.
View Article and Find Full Text PDFWilms' tumor gene 1 (WT1) has been proposed as an attractive target for cancer immunotherapy. A natural 9-mer peptide (CYTWNQMNL), which bound to human leukocyte antigen (HLA)-A*24:02, was identified from among WT1-specific cytotoxic T lymphocyte (CTL) epitopes. This natural WT1 CTL epitope peptide was further modified (CMTWNQMNL) to enhance its binding affinity to HLA-A*24:02.
View Article and Find Full Text PDFThe plasticity of T lymphocytes induced by epigenetic modifications of gene promoters may play a pivotal role in controlling their effector functions, which are sometimes causally associated with immune disorders. IL -17-producing T cells, which induce type 17 immune responses, are newly identified pathogenic effector cells. The type 1 signature cytokine IFN-γ strongly inhibits their differentiation, indicating a mutually exclusive relationship between type 17- and type 1-immune responses.
View Article and Find Full Text PDFCD11b(+) Gr-1(+) immature myeloid cells (ImCs), which are abnormally increased in tumor-bearing mice, were classified into three different subsets according to their phenotypic and morphological characteristics: Gr-1(low) F4/80(+) macrophages (MΦ-ImCs), Gr-1(mid) stab neutrophils (Neut(stab)-ImCs), and Gr-1(high) segmented neutrophils (Neut(seg)-ImCs). In the spleen, only MΦ-ImCs but not Neut(stab)-ImCs and Neut(seg)-ImCs exhibited a significant immunosuppressive activity in MLR. In contrast, tumor-infiltrating leukocytes (TILs) contained only two ImC subsets, MΦ-ImCs and Neut(seg)-ImC, both of which exhibited stronger inhibitory activity against T cells compared with spleen-MΦ-ImCs.
View Article and Find Full Text PDFIt has been reported that IFN-γ-producing CD8(+) T (Tc1) cells express cytotoxic molecules such as perforin and granzyme B to exhibit higher cytotoxicity against tumor cells compared with Tc2 cells. However, the critical role of IL-17-producing CD8(+) T (Tc17)-cell subsets in tumor immunity remains unclear. Tc17 cells differentiated from naive CD8(+) T cells did not possess cytotoxic molecules and exhibited no strong cytotoxicity.
View Article and Find Full Text PDFPercutaneous endoscopic jejunostomy (PEJ) has been developed and is considered to be a better method than percutaneous endoscopic gastrostomy for preventing the occurrence of aspiration pneumonia. However, the incidence of other complications associated with this procedure is less clear. We herein report a rare case with a small intestinal intussusception due to a PEJ placement.
View Article and Find Full Text PDFIt has not been determined yet whether the ERK-MAPK pathway regulates longevity of metazoans. Here, we show that the Caenorhabditis elegans ERK cascade promotes longevity through the two longevity-promoting transcription factors, SKN-1 and DAF-16. We find that RNAi of three genes, which constitute the ERK cascade (lin-45/RAF1, mek-2/MEK1/2, and mpk-1/ERK1/2), results in reduction of life span.
View Article and Find Full Text PDFSprouty, an inhibitor of receptor tyrosine kinase signaling, plays an important role in the regulation of a wide variety of biological processes. Although it is established that the Sprouty inhibitory activity is induced by tyrosine phosphorylation in response to stimuli, its action mechanisms have not been fully elucidated. Here, we report identification of a novel target of Sprouty.
View Article and Find Full Text PDFThe ERK MAP kinase and PI3-kinase/Akt pathways are major intracellular signaling modules, which are known to regulate diverse cellular processes including cell proliferation, survival and malignant transformation. However, it has not been fully understood how these two pathways interact with each other. Here, we demonstrate that inhibition of the ERK pathway by the MEK inhibitor U0126 or PD98059 significantly potentiates EGF- and FGF-induced Akt phosphorylation at both Thr308 and Ser473.
View Article and Find Full Text PDF