We study how the herd immunity threshold and the expected epidemic size depend on homophily with respect to vaccine adoption. We find that the presence of homophily considerably increases the critical vaccine coverage needed for herd immunity and that strong homophily can push the threshold entirely out of reach. The epidemic size monotonically increases as a function of homophily strength for a perfect vaccine, while it is maximized at a nontrivial level of homophily when the vaccine efficacy is limited.
View Article and Find Full Text PDFWe evaluate the efficiency of various heuristic strategies for allocating vaccines against COVID-19 and compare them to strategies found using optimal control theory. Our approach is based on a mathematical model which tracks the spread of disease among different age groups and across different geographical regions, and we introduce a method to combine age-specific contact data to geographical movement data. As a case study, we model the epidemic in the population of mainland Finland utilizing mobility data from a major telecom operator.
View Article and Find Full Text PDFThe origin of non-Poissonian or bursty temporal patterns observed in various data sets for human social dynamics has been extensively studied, yet its understanding still remains incomplete. Considering the fact that humans are social beings, a fundamental question arises: Is the bursty human dynamics dominated by individual characteristics or by interaction between individuals? In this paper we address this question by analyzing the Wikipedia edit history to see how spontaneous individual editors are in initiating bursty periods of editing, i.e.
View Article and Find Full Text PDFComprehensive characterization of non-Poissonian, bursty temporal patterns observed in various natural and social processes is crucial for understanding the underlying mechanisms behind such temporal patterns. Among them bursty event sequences have been studied mostly in terms of interevent times (IETs), while the higher-order correlation structure between IETs has gained very little attention due to the lack of a proper characterization method. In this paper we propose a method of representing an event sequence by a burst tree, which is then decomposed into a set of IETs and an ordinal burst tree.
View Article and Find Full Text PDFWater in nanoconfinement shows distinct properties that are markedly different from those of bulk water. These unique properties stem not only from the water-water interaction but also from the interactions between water and the surrounding confining environment. Here we used a combined approach of vibrational spectroscopies (Raman, FTIR, and IR electroabsorption) and a multivariate curve resolution technique to study the interactions of water in a heterogeneous confining environment within a prototype of pillared layer-type metal-organic frameworks (MOFs), CPL-1 ([Cu2(pzdc)2(pyz)]n, where pzdc = 2,3-pyrazinedicarboxylate, pyz = pyrazine).
View Article and Find Full Text PDFDynamical processes in various natural and social phenomena have been described by a series of events or event sequences showing non-Poissonian, bursty temporal patterns. Temporal correlations in such bursty time series can be understood not only by heterogeneous interevent times (IETs) but also by correlations between IETs. Modeling and simulating various dynamical processes requires us to generate event sequences with a heavy-tailed IET distribution and memory effects between IETs.
View Article and Find Full Text PDFSpreading dynamics has been considered to take place in temporal networks, where temporal interaction patterns between nodes show non-Poissonian bursty nature. The effects of inhomogeneous interevent times (IETs) on the spreading have been extensively studied in recent years, yet little is known about the effects of correlations between IETs on the spreading. In order to investigate those effects, we study two-step deterministic susceptible-infected (SI) and probabilistic SI dynamics when the interaction patterns are modeled by inhomogeneous and correlated IETs, i.
View Article and Find Full Text PDFTemporal inhomogeneities in event sequences of natural and social phenomena have been characterized in terms of interevent times and correlations between interevent times. The inhomogeneities of interevent times have been extensively studied, while the correlations between interevent times, often called correlated bursts, are far from being fully understood. For measuring the correlated bursts, two relevant approaches were suggested, i.
View Article and Find Full Text PDFWe study the collective dynamics of repulsive self-propelled particles. The particles are governed by coupled equations of motion that include polar self-propulsion, damping of velocity and of polarity, repulsive particle-particle interaction, and deterministic dynamics. Particle dynamics simulations show that the collective coherent motion with large density fluctuations spontaneously emerges from a disordered, isotropic state.
View Article and Find Full Text PDF