Prior to the practical application of rechargeable aprotic Li-O batteries, the high charging overpotentials of these devices (which inevitably cause irreversible parasitic reactions) must be addressed. The use of redox mediators (RMs) that oxidatively decompose the discharge product, LiO, is one promising solution to this problem. However, the mitigating effect of RMs is currently insufficient, and so it would be beneficial to clarify the LiO reductive growth and oxidative decomposition mechanisms.
View Article and Find Full Text PDFEnhancement of the discharge capacity of lithium-oxygen batteries (LOBs) while maintaining a high cell voltage is an important challenge to overcome to achieve an ideal energy density. Both the cell voltage and discharge capacity of an LOB could be controlled by employing a binary solvent electrolyte composed of dimethyl sulfoxide (DMSO) and acetonitrile (MeCN), whereby an energy density 3.2 times higher than that of the 100 vol % DMSO electrolyte was obtained with an electrolyte containing 50 vol % of DMSO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Various electrolyte components have been investigated with the aim of improving the cycle life of lithium-oxygen (Li-O) batteries. A tetraglyme-based electrolyte containing dual anions of Br and NO is a promising electrolyte system in which the cell voltage during charging is reduced because of the redox-mediator function of the Br/Br and NO/NO couples, while the Li-metal anode is protected by LiO formed via the reaction between Li metal and NO. To maximize the potential of this system, the fundamental factors that limit the cycle life should be clarified.
View Article and Find Full Text PDFThe original version of this Article contained an error in the title, which was previously incorrectly given as 'Negative differential resistance as a critical indicator for the discharge capacity of lithium-oxygene batteries'. The correct version states 'lithium-oxygen' in place of 'lithium-oxygene'. This has been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDFIn non-aqueous lithium-oxygen batteries, the one-electron reduction of oxygen and subsequent lithium oxide formation both occur during discharge. This lithium oxide can be converted to insulating lithium peroxide via two different pathways: a second reduction at the cathode surface or disproportionation in solution. The latter process is known to be advantageous with regard to increasing the discharge capacity and is promoted by a high donor number electrolyte because of the stability of lithium oxide in media of this type.
View Article and Find Full Text PDF