Publications by authors named "Takatoshi Yaoita"

For branched polymers, the curvilinear motion of the branch point along the backbone is a significant relaxation source but details of this motion have not been well understood. This study conducts multi-chain sliplink simulations to examine effects of the spatial fluctuation and curvilinear hopping of the branch point on the viscoelastic relaxation. The simulation is based on the primitive chain network model that allows the spatial fluctuations of sliplink and branch point and the chain sliding along the backbone according to the subchain tension, chemical potential gradients, drag force against medium, and random force.

View Article and Find Full Text PDF

Simulation results of the primitive chain network (PCN) model for entangled polymers are compared here to existing data of diffusion coefficient, linear and nonlinear shear and elongational rheology of monodisperse polystyrene melts. Since the plateau modulus of polystyrene is well known from the literature, the quantitative comparison between the whole set of data and simulations only requires a single adjustable parameter, namely, a basic time. The latter, however, must be consistent with the known rheology of unentangled polystyrene melts, i.

View Article and Find Full Text PDF

The concept of dynamic tube dilation (DTD) is here used to formulate a new simulation scheme to obtain the linear viscoelastic response of long chains with a large number of entanglements. The new scheme is based on the primitive chain network model previously proposed by some of the authors, and successfully employed to simulate linear and nonlinear behavior of moderately entangled polymers. Scaling laws are generated by the DTD concept, and allow for prediction of the linear response of very long chains on the basis of suitable simulations performed on shorter ones, without introducing adjustable parameters.

View Article and Find Full Text PDF