Publications by authors named "Takatomi Yamada"

Genomic rearrangements often generate phenotypic diversification. We previously reported the TAQing system where genomic rearrangements are induced via conditional activation of a restriction endonuclease in yeast and plant cells to produce mutants with marked phenotypic changes. Here we developed the TAQing2.

View Article and Find Full Text PDF

Kinetochores drive chromosome segregation by mediating chromosome interactions with the spindle. In higher eukaryotes, sister kinetochores are separately positioned on opposite sides of sister centromeres during mitosis, but associate with each other during meiosis I. Kinetochore association facilitates the attachment of sister chromatids to the same pole, enabling the segregation of homologous chromosomes toward opposite poles.

View Article and Find Full Text PDF

Meiotic crossover (CO) recombination initiates from programmed DNA double-strand breaks (DSBs) around hotspots, and results in reciprocal exchange of chromosome segments between homologous chromosomes (homologs). COs are crucial for most sexually-reproducing organisms because they promote accurate chromosome segregation and create genetic diversity. Therefore, faithful accomplishment of CO formation is ensured in many ways, but the bases of the regulation are not fully understood.

View Article and Find Full Text PDF

DNA-strand breaks influence structure and function of chromosomes in diverse ways, and it is essential to analyze the lesions to understand behaviors of genetic information. For researchers in a wide array of fields including recombination, repair, and DNA damage response, efficient and easy detection of DNA breaks is of paramount importance. Among several procedures suitable for this purpose, a method to directly observe broken chromosomes by pulsed-field gel electrophoresis, using the fission yeast Schizosaccharomyces pombe as a model organism, is described in this chapter.

View Article and Find Full Text PDF

HORMA domain-containing proteins such as Hop1 play crucial regulatory roles in various chromosomal functions. Here, we investigated roles of the fission yeast Hop1 in the formation of recombination-initiating meiotic DNA double strand breaks (DSBs). Meiotic DSB formation in fission yeast relies on multiple protein-protein interactions such as the one between the chromosome axial protein Rec10 and the DSB-forming complex subunit Rec15.

View Article and Find Full Text PDF

Meiotic recombination ensures faithful chromosome segregation and confers genetic diversity to gametes, and thus, is a key DNA-templated reaction not only for sexual reproduction, but also evolution. This recombination is initiated by programmed DNA double strand breaks (DSBs), which are mainly formed at recombination hotspots. As meiotic DSB formation requires multiple proteins, it is regulated by chromatin structure.

View Article and Find Full Text PDF

Meiotic recombination is initiated by programmed formation of DNA double strand breaks (DSBs), which are mainly formed at recombination hotspots. Meiotic DSBs require multiple proteins including the conserved protein Spo11 and its cofactors, and are influenced by chromatin structure. For example, local chromatin around hotspots directly impacts DSB formation.

View Article and Find Full Text PDF

Meiotic homologous recombination, a critical event for ensuring faithful chromosome segregation and creating genetic diversity, is initiated by programmed DNA double-strand breaks (DSBs) formed at recombination hotspots. Meiotic DSB formation is likely to be influenced by other DNA-templated processes including transcription, but how DSB formation and transcription interact with each other has not been understood well. In this study, we used fission yeast to investigate a possible interplay of these two events.

View Article and Find Full Text PDF

It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcription promotes chromatin remodeling and fbp1 mRNA expression.

View Article and Find Full Text PDF

Drug resistance is a challenge in chemotherapy, and, to date, there has been little resolution as to how it is induced. We previously isolated a host of doxorubicin resistance (DXR) genes in fission yeast and here we investigate the regulation of this resistance through two high mobility group (HMG) motif-containing DXR proteins, Nht1 and Hap2. The concurrent deletion of nht1 and hap2 did not confer cumulative sensitivity to doxorubicin, indicating that these factors cooperate closely in similar epistatic groups.

View Article and Find Full Text PDF

Meiotic homologous recombination is markedly activated during meiotic prophase to play central roles in faithful chromosome segregation and conferring genetic diversity to gametes. It is initiated by programmed DNA double-strand breaks (DSBs) by the conserved protein Spo11, and preferentially occurs at discrete sites called hotspots. Since the functions of Spo11 are influenced by both of local chromatin at hotspots and higher-order chromosome structures, formation of meiotic DSBs is under regulation of chromatin structure.

View Article and Find Full Text PDF

Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear.

View Article and Find Full Text PDF

Higher-order chromosome structure is assumed to control various DNA-templated reactions in eukaryotes. Meiotic chromosomes implement developed structures called "axes" and "loops"; both are suggested to tether each other, activating Spo11 to catalyze meiotic DNA double-strand breaks (DSBs) at recombination hotspots. We found that the Schizosaccharomyces pombe Spo11 homolog Rec12 and its partners form two distinct subcomplexes, DSBC (Rec6-Rec12-Rec14) and SFT (Rec7-Rec15-Rec24).

View Article and Find Full Text PDF

Activating transcription factor/cAMP response element binding protein (ATF/CREB) family transcription factors play central roles in maintaining cellular homeostasis. They are activated in response to environmental stimuli, bind to CRE sequences in the promoters of stress-response genes and regulate transcription. Although ATF/CREB proteins are widely conserved among most eukaryotes, their characteristics are highly diverse.

View Article and Find Full Text PDF

One of the major features of meiosis is a high frequency of homologous recombination that not only confers genetic diversity to a successive generation but also ensures proper segregation of chromosomes. Meiotic recombination is initiated by DNA double-strand breaks that require many proteins including the catalytic core, Spo11. In this regard, like transcription and repair, etc.

View Article and Find Full Text PDF

The Schizosaccharomyces pombe nip1(+)/ctp1(+) gene was previously identified as an slr (synthetically lethal with rad2) mutant. Epistasis analysis indicated that Nip1/Ctp1 functions in Rhp51-dependent recombinational repair, together with the Rad32 (spMre11)-Rad50-Nbs1 complex, which plays important roles in the early steps of DNA double-strand break repair. Nip1/Ctp1 was phosphorylated in asynchronous, exponentially growing cells and further phosphorylated in response to bleomycin treatment.

View Article and Find Full Text PDF

Histone acetylation is important in regulating DNA accessibility. Multifunctional Sin3 proteins bind histone deacetylases (HDACs) to assemble silencing complexes that selectively target chromatin. We show that, in fission yeast, an essential HDAC, Clr6, exists in two distinct Sin3 core complexes.

View Article and Find Full Text PDF

Posttranslational modifications of histones play an essential role in heterochromatin assembly. Whereas the role of Clr4/Suv39h-mediated methylation of histone H3 at lysine 9 (H3K9) in heterochromatin assembly is well studied, the exact function of histone deacetylases (HDACs) in this process is unclear. We show that Clr3, a fission yeast homolog of mammalian class II HDACs, acts in a distinct pathway parallel to RNAi-directed heterochromatin nucleation to recruit Clr4 and mediate H3K9 methylation at the silent mating-type region and centromeres.

View Article and Find Full Text PDF

Mating-type switching in Schizosaccharomyces pombe involves replacing genetic information at the expressed mat1 locus with sequences copied from one of two silent donor loci, mat2-P or mat3-M, located within a 20-kb heterochromatic domain. Donor selection is dictated by cell type: mat2 is the preferred donor in M cells, and mat3 is the preferred donor in P cells. Here we show that a recombination-promoting complex (RPC) containing Swi2 and Swi5 proteins exhibits cell type-specific localization pattern at the silent mating-type region and this differential localization modulates donor preference during mating-type switching.

View Article and Find Full Text PDF

Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE)-like sequence, M26, and a heterodimeric ATF/CREB transcription factor, Atf1.Pcr1.

View Article and Find Full Text PDF

The specific induction of genes in response to distinct environmental stress is vital for all eukaryotes. To study the mechanisms that result in selective gene responses, we examined the role of the fission yeast Tup1 family repressors in chromatin regulation. We found that chromatin structure around a cAMP-responsive element (CRE)-like sequence in ade6-M26 that is bound by Atf1.

View Article and Find Full Text PDF

DNA unwinding factor (DUF) was discovered as an essential DNA replication factor in Xenopus egg extracts. DUF consists of an HMG protein and a homolog of Cdc68p/Spt16p, and has the capability of unwinding dsDNA. Here we have examined the interaction of DUF with chromatin.

View Article and Find Full Text PDF