Publications by authors named "Takatoku Oida"

It is suggested that polymyositis, an autoimmune inflammatory myopathy, is mediated by autoaggressive CD8 T cells. Skeletal muscle C protein is a self-antigen that induces C protein-induced myositis, a murine model of polymyositis. To establish a new murine model of myositis inducible with a single CD8 T-cell epitope peptide that derives from the C protein, three internet-based prediction systems were employed to identify 24 candidate peptides of the immunogenic fragment of the C protein and bind theoretically to major histocompatibility complex class I molecules of C57BL/6 (B6) mice.

View Article and Find Full Text PDF

Objective: It has been reported that polymyositis (PM) is driven by CD8+ cytotoxic T lymphocytes. The C protein-induced myositis (CIM) model we have established is similar to PM in pathology except that it undergoes spontaneous remission. We undertook the present study to delineate the roles of innate and acquired immunity in myositis.

View Article and Find Full Text PDF

Background: It is generally assumed that T cells do not produce active TGF-β since active TGF-β as measured in supernatants by ELISA without acidification is usually not detectable. However, it is possible that active TGF-β from T cells may take a special form which is not detectable by ELISA.

Methodology/principal Findings: We constructed a TGF-β bioassay which can detect both soluble and membrane-bound forms of TGF-β from T cells.

View Article and Find Full Text PDF

Background: It has been reported that human FOXP3(+) CD4 Tregs express GARP-anchored surface latency-associated peptide (LAP) after activation, based on the use of an anti-human LAP mAb. Murine CD4 Foxp3(+) Tregs have also been reported to express surface LAP, but these studies have been hampered by the lack of suitable anti-mouse LAP mAbs.

Methodology/principal Findings: We generated anti-mouse LAP mAbs by immunizing TGF-β(-/-) animals with a mouse Tgfb1-transduced P3U1 cell line.

View Article and Find Full Text PDF

TGF-β is one of the key cytokines controlling immune responses. Measuring TGF-β from culture supernatants in vitro is an important index of immune function. However, fetal bovine serum (FBS) contains a high level of latent TGF-β that often hampers measuring T cell-derived TGF-β in culture using FBS-supplemented medium.

View Article and Find Full Text PDF

TGF-beta plays a crucial role in immune regulation. It has been reported that pro-TGF-beta, latency-associated peptide (LAP), latent TGF-beta and/or active TGF-beta (LAP/TGF-beta) is localized on the cell surface of Foxp3(+) regulatory T cells. However, the molecular mechanism(s) of how LAP/TGF-beta is anchored on the cell membrane is unknown.

View Article and Find Full Text PDF

Donor-specific graft tolerance can be established by a combination of allo-antigen exposure and manipulation of T cell function, for example by donor-specific transfusion (DST) under the cover of a non-depleting anti-CD4 mAb. Yet, the cellular basis of this graft tolerance is still obscure. This report shows that T cell-deficient BALB/c nude mice reconstituted with naive unfractionated T cells are specifically tolerized to DBA/2 skin grafts by DST and anti-CD4 mAb treatment, whereas those transferred with T cell suspensions depleted of all Foxp3(+)CD25(+)CD4(+) natural regulatory T cells (Tregs) are not.

View Article and Find Full Text PDF

CD4+CD25+ T cells play a pivotal role in immunological homeostasis by their capacity to exert immunosuppressive activity. However, the mechanism by which these cells function is still a subject for debate. We previously reported that surface (membrane) TGF-beta produced by CD4+CD25+ T cells was an effector molecule mediating suppressor function.

View Article and Find Full Text PDF

Naturally occurring CD25(+)CD4(+) regulatory T cells (Tregs) actively engage in the maintenance of immunologic self-tolerance and immunoregulation. They specifically express the transcription factor Forkhead box P3 (Foxp3) as a master control molecule for their development and function. Although several cell-surface molecules have been reported as Treg-specific markers, such as CD25, glucocorticoid-induced TNFR family-related gene/protein and CTL-associated molecule-4, they are also expressed on activated T cells derived from CD25(-)CD4(+) naive T cells.

View Article and Find Full Text PDF

Alzheimer's disease is marked by progressive accumulation of amyloid beta-peptide (Abeta) which appears to trigger neurotoxic and inflammatory cascades. Substantial activation of microglia as part of a local innate immune response is prominent at sites of Abeta plaques in the CNS. However, the role of activated microglia as Abeta APCs and the induction of adaptive immune responses has not been investigated.

View Article and Find Full Text PDF

Murine CD4(+)CD25(+) regulatory cells have been reported to express latency-associated peptide (LAP) and TGF-beta on the surface after activation, and exert regulatory function by the membrane-bound TGF-beta in vitro. We have now found that a small population of CD4(+) T cells, both CD25(+) and CD25(-), can be stained with a goat anti-LAP polyclonal Ab without being stimulated. Virtually all these LAP(+) cells are also positive for thrombospondin, which has the ability to convert latent TGF-beta to the active form.

View Article and Find Full Text PDF