Publications by authors named "Takato Imaizumi"

Article Synopsis
  • - The study examines how florigen and antiflorigen genes within the PEBP family influence flowering in angiosperms, especially in eelgrass, which is vital for its survival against climate change.
  • - Researchers identified thirteen PEBP genes in eelgrass and found that four of them affect flowering when overexpressed; they analyzed gene expression using RT-PCR across different eelgrass populations and growth stages.
  • - Results indicate that certain genes promote flowering while others inhibit it, with some genes expressed variably in different parts of the plant, suggesting a complex role in flowering and shoot architecture in eelgrass.
View Article and Find Full Text PDF

Plants activate induced defenses through the recognition of molecular patterns. Like pathogen-associated molecular patterns (PAMPs), herbivore-associated molecular patterns (HAMPs) can be recognized by cell surface pattern recognition receptors leading to defensive transcriptional changes in host plants. Herbivore-induced defensive outputs are regulated by the circadian clock, but the underlying molecular mechanisms remain unknown.

View Article and Find Full Text PDF

The precise onset of flowering is crucial to ensure successful plant reproduction. The gene () encodes florigen, a mobile signal produced in leaves that initiates flowering at the shoot apical meristem. In response to seasonal changes, is induced in phloem companion cells located in distal leaf regions.

View Article and Find Full Text PDF

Seasonal changes in spring induce flowering by expressing the florigen, FLOWERING LOCUS T (FT), in . is expressed in unique phloem companion cells with unknown characteristics. The question of which genes are co-expressed with and whether they have roles in flowering remains elusive.

View Article and Find Full Text PDF

FKF1 dimerization is crucial for proper FT levels to fine-tune flowering time. Attenuating FKF1 homodimerization increased CO abundance by enhancing its COP1 binding, thereby accelerating flowering under long days. In Arabidopsis (Arabidopsis thaliana), the blue-light photoreceptor FKF1 (FLAVIN-BINDING, KELCH REPEAT, F-BOX 1) plays a key role in inducing the expression of FLOWERING LOCUS T (FT), encoding the main florigenic signal in plants, in the late afternoon under long-day conditions (LDs) by forming dimers with FT regulators.

View Article and Find Full Text PDF
Article Synopsis
  • Plants use light and temperature changes to regulate flowering by altering genes like FLOWERING LOCUS T (FT), which peaks in levels during morning and evening under long-day conditions in natural environments.
  • The research shows ZEITLUPE (ZTL) interacts with FT repressors, which hinders morning FT expression, while a mutant lacking ZTL (ztl) shows increased morning FT levels under natural mimicking conditions.
  • The balance between low temperatures, which enhance ZTL activity, and far-red light, which reduces ZTL levels, is crucial for plants to control the timing of flowering by adjusting FT expression in the morning.
View Article and Find Full Text PDF

Conservative flowering behaviours, such as flowering during long days in summer or late flowering at a high leaf number, are often proposed to protect against variable winter and spring temperatures which lead to frost damage if premature flowering occurs. Yet, due the many factors in natural environments relative to the number of individuals compared, assessing which climate characteristics drive these flowering traits has been difficult. We applied a multidisciplinary approach to 10 winter-annual Arabidopsis thaliana populations from a wide climactic gradient in Norway.

View Article and Find Full Text PDF

In natural long days, the florigen gene FLOWERING LOCUS T (FT) shows a bimodal expression pattern with morning and dusk peaks in Arabidopsis. This pattern differs from the one observed in the laboratory, and little is known about underlying mechanisms. A red : far-red (R : FR) ratio difference between sunlight and fluorescent light causes this FT pattern mismatch.

View Article and Find Full Text PDF

The timing of flowering affects the success of sexual reproduction. This developmental event also determines crop yield, biomass, and longevity. Therefore, this mechanism has been targeted for improvement along with crop domestication.

View Article and Find Full Text PDF

The circadian clock represents a critical regulatory network, which allows plants to anticipate environmental changes as inputs and promote plant survival by regulating various physiological outputs. Here, we examine the function of the clock-regulated transcription factor, CYCLING DOF FACTOR 6 (CDF6), during cold stress in . We found that the clock gates transcript accumulation in the vasculature during cold stress.

View Article and Find Full Text PDF
Article Synopsis
  • Light-sheet microscopy is key for high-throughput imaging of cleared tissues, but there is a demand for a flexible system that meets diverse imaging needs.
  • The proposed 'hybrid' system integrates non-orthogonal dual-objective and conventional open-top light-sheet designs to support various volumetric imaging applications.
  • This hybrid system has shown success in efficiently imaging structures in a cleared mouse brain, allowing for both targeted sub-micrometer imaging and high-throughput analysis of multiple specimens.
View Article and Find Full Text PDF

Drought stress triggers the accumulation of the phytohormone abscisic acid (ABA), which in turn activates the expression of the floral integrator gene CONSTANS (CO), accelerating flowering. However, the molecular mechanism of ABA-induced CO activation remains elusive. Here, we conducted a yeast one-hybrid assay using the CO promoter from Brassica campestris (syn.

View Article and Find Full Text PDF

Temperate species often require or flower most rapidly in the long daylengths, or photoperiods, experienced in summer or after prolonged periods of cold temperatures, referred to as vernalization. Yet, even within species, plants vary in the degree of responsiveness to these cues. In , () and () genes are key to photoperiod and vernalization perception and antagonistically regulate () to influence the flowering time of the plants.

View Article and Find Full Text PDF

The plant circadian clock regulates multiple developmental and physiological events that occur at specific times and seasons. As many of the currently known clock proteins and clock-associated regulators are transcription factors, analyzing molecular events in the nuclei is crucial. In addition, long-time course analyses of protein abundance and interactions are often required to assess the role of the circadian clock on clock-regulated phenomena.

View Article and Find Full Text PDF
Article Synopsis
  • Nitrogen is crucial for plant development, particularly in flowering, and low nitrogen levels can accelerate flowering, though the specific molecular mechanisms are still unclear.
  • Researchers identified the FBH4 transcription factor as a key player in regulating flowering in response to low nitrogen, noting that changes in its phosphorylation state impact its activity.
  • The study also highlights how the protein SnRK1 negatively affects flowering and nutrient recycling under high nitrogen conditions, ultimately showing how nitrogen levels influence flowering time and plant adaptation to nutrient scarcity.
View Article and Find Full Text PDF

Plants measure light quality, intensity, and duration to coordinate growth and development with daily and seasonal changes in environmental conditions; however, the molecular details linking photochemistry to signal transduction remain incomplete. Two closely related light, oxygen, or voltage (LOV) domain-containing photoreceptor proteins, ZEITLUPE (ZTL) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), divergently regulate the protein stability of circadian clock and photoperiodic flowering components to mediate daily and seasonal development. Using structural approaches, we identified that mutations at the Gly46 position led to global rearrangements of the ZTL dimer interface in the isolated ZTL-LOV domain.

View Article and Find Full Text PDF

Bioluminescence is a powerful biological signal that scientists have repurposed as a reporter for gene expression in plants and animals. However, there are downsides associated with the need to provide a substrate to these reporters, including its high cost and non-uniform tissue penetration. In this work we reconstitute a fungal bioluminescence pathway (FBP) using a composable toolbox of parts.

View Article and Find Full Text PDF

Plants monitor changes in day length to coordinate their flowering time with appropriate seasons. In Arabidopsis , the diel and seasonal regulation of CONSTANS (CO) protein stability is crucial for the induction of () gene in long days. FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and ZEITLUPE (ZTL) proteins control the shape of CO expression profile antagonistically, although regulation mechanisms remain unknown.

View Article and Find Full Text PDF

We assessed mechanistic temperature influence on flowering by incorporating temperature-responsive flowering mechanisms across developmental age into an existing model. Temperature influences the leaf production rate as well as expression of (), a photoperiodic flowering regulator that is expressed in leaves. The Framework Model incorporated temperature influence on leaf growth but ignored the consequences of leaf growth on and direct temperature influence of expression.

View Article and Find Full Text PDF

The plant-specific protein GIGANTEA (GI) controls many developmental and physiological processes, mediating rhythmic post-translational regulation. GI physically binds several proteins implicated in the circadian clock, photoperiodic flowering, and abiotic stress responses. To understand GI's multifaceted function, we aimed to comprehensively and quantitatively identify potential interactors of GI in a time-specific manner, using proteomics on Arabidopsis plants expressing epitope-tagged GI.

View Article and Find Full Text PDF

In plants, light receptors play a pivotal role in photoperiod sensing, enabling them to track seasonal progression. Photoperiod sensing arises from an interaction between the plant's endogenous circadian oscillator and external light cues. Here, we characterize the role of phytochrome A (phyA) in photoperiod sensing.

View Article and Find Full Text PDF

Plants sense light and temperature changes to regulate flowering time. Here, we show that expression of the Arabidopsis florigen gene, FLOWERING LOCUS T (FT), peaks in the morning during spring, a different pattern than we observe in the laboratory. Providing our laboratory growth conditions with a red/far-red light ratio similar to open-field conditions and daily temperature oscillation is sufficient to mimic the FT expression and flowering time in natural long days.

View Article and Find Full Text PDF