Biochem Biophys Res Commun
January 2025
Endosomal sorting complex required for transport (ESCRT) is required for maintenance of nuclear functions and prevention of neurodegenerative diseases. The budding yeast Saccharomyces cerevisiae is an ideal model for studying ESCRT-dependent diseases. Nucleolar proteins are degraded by macronucleophagy and micronucleophagy after nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) kinase.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Biochem Biophys Res Commun
July 2022
Vacuoles and lysosomes are organelles involved in the degradation of cytoplasmic proteins and organelles. Vacuolar morphology is dynamically regulated by fission and fusion in budding yeast. Vacuolar fusion is elicited in nutrient-depleted conditions and mediated by inactivation of target of rapamycin complex 1 (TORC1) protein kinase.
View Article and Find Full Text PDFWhen asynchronously growing cells suffer from nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) protein kinase, the rDNA (rRNA gene) region is condensed in budding yeast Saccharomyces cerevisiae, which is executed by condensin and Cdc14 protein phosphatase. However, it is unknown whether these mitotic factors can condense the rDNA region in nutrient-starved interphase cells. Here, we show that condensin is not involved in TORC1 inactivation-induced rDNA condensation in G1 cells.
View Article and Find Full Text PDFUnsatisfied kinetochore-microtubule attachment activates the spindle assembly checkpoint to inhibit the metaphase-anaphase transition. However, some cells eventually override mitotic arrest by mitotic slippage. Here, we show that inactivation of TORC1 kinase elicits mitotic slippage in budding yeast and human cells.
View Article and Find Full Text PDFRemodeling of vacuolar membranes mediated by endosomal sorting complex required for transport (ESCRT) is critical for microautophagy induction in budding yeast. Nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) protein kinase elicit recruitment of the ESCRT-0 complex (Vps27-Hse1) onto vacuolar membranes and ESCRT-mediated microautophagy induction. Mitotic protein phosphatase Cdc14 antagonizes TORC1-mediated phosphorylation in macroautophagy induction after nutrient starvation and TORC1 inactivation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2021
The degradation of nucleolar proteins - nucleophagy - is elicited by nutrient starvation or the inactivation of target of rapamycin complex 1 (TORC1) protein kinase in budding yeast. Prior to nucleophagy, nucleolar proteins migrate to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas rDNA (rRNA gene) repeat regions are condensed and escape towards NVJ-distal sites. This suggests that the NVJ controls nucleolar dynamics from outside of the nucleus after TORC1 inactivation, but its molecular mechanism is unclear.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2021
Chromosomes have their own territories and dynamically translocate in response to internal and external cues. However, whether and how territories and the relocation of chromosomes are controlled by other intracellular organelles remains unknown. Upon nutrient starvation and target of rapamycin complex 1 (TORC1) inactivation, micronucleophagy, which preferentially degrades nucleolar proteins, occurs at the nucleus-vacuole junction (NVJ) in budding yeast.
View Article and Find Full Text PDFNutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase elicits nucleophagy degrading nucleolar proteins in budding yeast. After TORC1 inactivation, nucleolar proteins are relocated to sites proximal to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas ribosomal DNA (rDNA encoding rRNA) escapes from the NVJ. Condensin-mediated rDNA condensation promotes the repositioning and nucleophagic degradation of nucleolar proteins.
View Article and Find Full Text PDFThe yeast E2F functional homologs MBF (Mbp1/Swi6) and SBF (Swi4/Swi6) complexes are critical transcription factors for G1/S transition. The target of rapamycin complex 1 (TORC1) kinase promotes G1/S transition via upregulation of the G1 cyclin Cln3 that activates MBF and SBF in favorable nutrient conditions. Here, we show evidence that TORC1 directly regulates G1/S transition via MBF and SBF.
View Article and Find Full Text PDFDeformation of vacuolar membranes mediated by endosomal sorting complex required for transport (ESCRT) is necessary for microautophagy. Target of rapamycin complex 1 (TORC1) protein kinase negatively regulates ESCRT-0 (Vps27-Hse1) recruitment onto vacuolar membranes and microautophagy induction. However, whether and how protein phosphatase regulates these events is unknown.
View Article and Find Full Text PDFThe target of rapamycin complex 1 (TORC1) protein kinase is activated by nutrients and controls nutrient uptake via the membrane trafficking of various nutrient permeases. However, its molecular mechanisms remain elusive. Cholesterol (ergosterol in yeast) in conjunction with sphingolipids forms tight-packing microdomains, "lipid rafts", which are critical for intracellular protein sorting.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2020
Microautophagy is promoted after nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) kinase. Invagination of vacuolar membranes by endosomal sorting complex required for transport (ESCRT) is required for microautophagy. Vps27, a subunit of ESCRT-0, is recruited onto vacuolar membranes via dephosphorylation after TORC1 inactivation.
View Article and Find Full Text PDFNutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase induce nucleophagy preferentially degrading only nucleolar components in budding yeast. Nucleolar proteins are relocated to sites proximal to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas rDNA, which is embedded in the nucleolus under normal conditions, moves to NVJ-distal regions, causing rDNA dissociation from nucleolar proteins after TORC1 inactivation. This repositioning is mediated via chromosome linkage INM protein (CLIP)-cohibin complexes that tether rDNA to the inner nuclear membrane.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2019
Nucleolar proteins such as Nop1/fibrillarin are degraded by nucleophagy in nutrient-starved conditions. However, whether and how excess nucleolar proteins are removed in normal conditions is unknown. Here we show that overexpressed nucleolar protein Nop1 is toxic and degraded in nutrient-rich conditions in budding yeast.
View Article and Find Full Text PDFTarget of rapamycin complex 1 (TORC1) protein kinase responds to various stresses including genotoxic stress. However, its molecular mechanism is poorly understood. Here, we show that DNA damage induces nonselective and selective autophagy in budding yeast.
View Article and Find Full Text PDFMisfolded and aggregated proteins are eliminated to maintain protein homeostasis. Autophagy contributes to the removal of protein aggregates. However, if and how proteotoxic stress induces autophagy is poorly understood.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2019
Target of rapamycin complex 1 (TORC1) protein kinase, a master controller of cell growth, is thought to be involved in genome integrity. However, the molecular mechanisms associated with this are unclear. Here, we show that TORC1 inactivation causes decreases in the levels of a wide range of proteins involved in the DNA damage checkpoint (DDC) signaling including Tel1, Mre11, Rad9, Mrc1, and Chk1 in budding yeast.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2018
Cdh1, a substrate-recognition subunit of anaphase-promoting complex/cyclosome (APC/C), is a tumor suppressor, and it is downregulated in various tumor cells in humans. APC/C-Cdh1 is activated from late M phase to G1 phase by antagonizing Cdk1-mediated inhibitory phosphorylation. However, how Cdh1 protein levels are properly regulated is ill-defined.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2018
Accurate regulation of activity and level of the MCM complex is critical for precise DNA replication and genome transmission. Cyclin-dependent kinase (CDK) negatively regulates nuclear localization of the MCM complex via phosphorylation of the Mcm3 subunit. More recently, we found that Mcm3 is degraded via the Skp1-Cullin-F-box (SCF)-proteasome axis in budding yeast.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2018
Accurate DNA replication is at the heart of faithful genome transmission in dividing cells. DNA replication is strictly controlled by various factors. However, how environmental stresses such as nutrient starvation impact on these factors and DNA replication is largely unknown.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2018
Nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase promotes macroautophagy. Macroautophagy is a lipid-consuming process, and Nem1/Spo7 protein phosphatase and Pah1/lipin phosphatidate phosphatase are activated after TORC1 inactivation, supporting macroautophagy induction in the budding yeast Saccharomyces cerevisiae. On the other hand, whether and how microautophagy, which also consumes lipids, is regulated by TORC1 is controversial.
View Article and Find Full Text PDFNutrient starvation or inactivation of target of rapamycin complex 1 (TORC1) in budding yeast induces nucleophagy, a selective autophagy process that preferentially degrades nucleolar components. DNA, including ribosomal DNA (rDNA), is not degraded by nucleophagy, even though rDNA is embedded in the nucleolus. Here, we show that TORC1 inactivation promotes relocalization of nucleolar proteins and rDNA to different sites.
View Article and Find Full Text PDF