Publications by authors named "Takashi U Ito"

The amount of C in steel, which is critical in determining its properties, is strongly influenced by steel production technology. We propose a novel method of quantifying the bulk C content in steel non-destructively using muons. This revolutionary method may be used not only in the quality control of steel in production, but also in analyzing precious steel archaeological artifacts.

View Article and Find Full Text PDF

Magnesium hydride has great potential as a solid hydrogen (H) storage material because of its high H storage capacity of 7.6 wt%. However, its slow hydrogenation and dehydrogenation kinetics and the high temperature of 300 C required for decomposition are major obstacles to small-scale applications such as automobiles.

View Article and Find Full Text PDF

Nontrivial quantum states can be realized in the vicinity of the quantum critical point (QCP) in many strongly correlated electron systems. In particular, an emergence of unconventional superconductivity around the QCP strongly suggests that the quantum critical fluctuations play a central role in the superconducting pairing mechanism. However, a clear signature of the direct coupling between the superconducting pairing states and the quantum criticality has not yet been elucidated by the microscopic probes.

View Article and Find Full Text PDF

RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important.

View Article and Find Full Text PDF

Elemental analysis of materials is fundamentally important to science and technology. Many elemental analysis methods have been developed, but three-dimensional nondestructive elemental analysis of bulk materials has remained elusive. Recently, our project team, dreamX (damageless and regioselective elemental analysis with muonic X-rays), developed a nondestructive depth-profiling elemental analysis method after a decade of research.

View Article and Find Full Text PDF