Biochem Biophys Res Commun
November 2024
Glycoside hydrolase (GH) family 13 is among the main families of enzymes acting on starch; recently, subfamily 47 of GH13 (GH13_47) has been established. The crystal structure and function of a GH13_47 enzyme from Bacteroides ovatus has only been reported to date. This enzyme has α-amylase activity, while the GH13_47 enzymes comprise approximately 800-900 amino acid residues which are almost double those of typical α-amylases.
View Article and Find Full Text PDFThe trisaccharide 1-kestose, a major constituent of fructooligosaccharide, has strong prebiotic effects. We used high-performance liquid chromatography and 1H nuclear magnetic resonance spectroscopy to show that BiBftA, a β-fructosyltransferase belonging to glycoside hydrolase family 68, from Beijerinckia indica subsp. indica catalyzes transfructosylation of sucrose to produce mostly 1-kestose and levan polysaccharides.
View Article and Find Full Text PDFDextran is an α-(1→6)-glucan that is synthesized by some lactic acid bacteria, and branched dextran with α-(1→2)-, α-(1→3)-, and α-(1→4)-linkages are often produced. Although many dextranases are known to act on the α-(1→6)-linkage of dextran, few studies have functionally analyzed the proteins involved in degrading branched dextran. The mechanism by which bacteria utilize branched dextran is unknown.
View Article and Find Full Text PDFJaw1 (also known as IRAG2), a tail-anchored protein with 39 carboxyl (C)-terminal amino acids, is oriented to the lumen of the endoplasmic reticulum and outer nuclear membrane. We previously reported that Jaw1, as a member of the KASH protein family, plays a role in maintaining nuclear shape via its C-terminal region. Furthermore, we recently reported that Jaw1 functions as an augmentative effector of Ca2+ release from the endoplasmic reticulum by interacting with the inositol 1,4,5-trisphosphate receptors (IP3Rs).
View Article and Find Full Text PDFJaw1/LRMP is a membrane protein that is localized to the endoplasmic reticulum and outer nuclear membrane. Previously, we revealed that Jaw1 functions to maintain nuclear shape by interacting with microtubules as a Klarsicht/ANC-1/Syne/homology (KASH) protein. The loss of several KASH proteins causes defects in the position and shape of the Golgi apparatus as well as the nucleus, but the effects of Jaw1 depletion on the Golgi apparatus were poorly understood.
View Article and Find Full Text PDFThe nodes of Ranvier are unmyelinated gaps in the axon, important for the efficient transmission of action potentials. Despite the identification of several glycoproteins involved in node formation and maintenance, glycans' structure and formation in the node remain unclear. Previously, we developed a recombinant lectin from the Clostridium botulinum neurotoxin complex, specific to the galactose and N-acetylgalactosamine terminal epitopes (Gg).
View Article and Find Full Text PDFAn α-glucosidase from Aspergillus sojae, AsojAgdL, exhibits strong transglucosylation activity to produce α-1,6-glucosidic linkages. The most remarkable structural feature of AsojAgdL is that residues 457-560 of AsojAgdL (designated the NC sequence) is not conserved in other glycoside hydrolase family 31 enzymes, and part of this NC sequence is proteolytically cleaved during its maturation. In this study, the enzyme was expressed in Pichia pastoris, and electrophoretic analysis indicated that the recombinant enzyme, rAsojAgdL, consisted of two polypeptide chains, as observed in the case of the enzyme produced in an Aspergillus strain.
View Article and Find Full Text PDFCa influx upon G protein-coupled receptor (GPCR) stimulation is observed as a cytosolic Ca concentration oscillation crucial to initiating downstream responses including cell proliferation, differentiation, and cell-cell communication. Although Jaw1 is known to interact with inositol 1,4,5-triphosphate receptor (ITPRs), Ca channels on the endoplasmic reticulum, the function of Jaw1 in the Ca dynamics with physiological stimulation remains unclear. In this study, using inducible Jaw1-expressing HEK293 cells, we showed that Jaw1 increases Ca influx by GPCR stimulation via changing the Ca influx oscillation pattern.
View Article and Find Full Text PDFFructooligosaccharide is a mixture of mostly the trisaccharide 1-kestose (GF), tetrasaccharide nystose (GF), and fructosyl nystose (GF). Enzymes that hydrolyze GF may be useful for preparing GF from the fructooligosaccharide mixture. A β-fructofuranosidase belonging to glycoside hydrolase family 32 (GH32) from the honeybee gut bacterium Frischella perrara (FperFFase) was expressed in Escherichia coli and purified.
View Article and Find Full Text PDFThe tuft cell is a chemosensory cell, a specific cell type sharing the taste transduction system with a taste cell on the tongue, of which the existence has been discovered in various tissues including the gastrointestinal tract, gall bladder, trachea and pancreatic duct. To date, electron microscopic approaches have shown various morphological features of the tuft cell, such as long and thick microvilli, tubulovesicular network at the apical side and prominent skeleton structures. Recently, it has been reported that the small intestinal tuft cell functions to initiate type-2 immunity in response to helminth infection.
View Article and Find Full Text PDFLectins are proteins with the ability to recognize and bind to specific glycan structures. These molecules play important roles in many biological systems and are actively being studied because of their ability to detect glycan biomarkers for many diseases. Hemagglutinin (HA) proteins from Clostridium botulinum type C neurotoxin complex; HA1, HA2, and HA3 are lectins that aid in the internalization of the toxin complex by binding to glycoproteins on the cell surface.
View Article and Find Full Text PDFWe constructed enzyme variants of the α-glucosidases from Aspergillus oryzae (AoryAgdS) and Aspergillus sojae (AsojAgdL) by mutating the amino acid residue at position 450. AoryAgdS_H450R acquired the ability to produce considerable amounts of α-1,6-transglucosylation products, whereas AsojAgdL_R450H changed to produce more α-1,3- and α-1,4-transglucosylation products than α-1,6-products. The 450th amino acid residue is critical for the transglucosylation of these α-glucosidases.
View Article and Find Full Text PDFButyrate produced by gut microbiota has multiple beneficial effects on host health, and oligosaccharides derived from host diets and glycans originating from host mucus are major sources of its production. A significant reduction of butyrate-producing bacteria has been reported in patients with inflammatory bowel diseases and colorectal cancers. Although gut butyrate levels are important for host health, oligosaccharide metabolic properties in butyrate producers are poorly characterized.
View Article and Find Full Text PDFJaw1/LRMP is a type II integral membrane protein that is localized at the endoplasmic reticulum (ER) and outer nuclear membrane. We previously reported that a function of Jaw1 is to maintain the nuclear shape as a KASH protein via its carboxyl terminal region, a component of linker of nucleoskeleton and cytoskeleton complex in the oligomeric state. Although the oligomerization of some KASH proteins via the cytosolic regions serves to stabilize protein-protein interactions, the issue of how the oligomerization of Jaw1 is regulated is not completely understood.
View Article and Find Full Text PDFAn enzyme belonging to glycoside hydrolase family 68 (GH68) from subsp. NBRC 3744 was expressed in . Biochemical characterization showed that the enzyme was identified to be a β-fructosyltransferase (BiBftA).
View Article and Find Full Text PDFAccording to whole-genome sequencing, produces multiple enzymes of glycoside hydrolases (GH) 31. Here we focus on a GH31 α-glucosidase, AgdB, from . AgdB has also previously been reported as being expressed in the yeast species, ; while the recombinant enzyme (rAgdB) has been shown to catalyze tranglycosylation via a complex mechanism.
View Article and Find Full Text PDFGlycoside hydrolase family (GH) 31 contains a large variety of enzymes, but the major members are enzymes that act on relatively small oligosaccharides such as α-glucosidase. Here, we determined the crystal structure of Flavobacterium johnsoniae dextranase (FjDex31A), an enzyme from F. johnsoniae that hydrolyzes a polysaccharide, dextran.
View Article and Find Full Text PDFWe characterized an α-glucosidase belonging to the glycoside hydrolase family 31 from The α-glucosidase gene was cloned using the whole genome sequence of , and the recombinant enzyme was expressed in . The enzyme was purified using affinity chromatography. The enzyme showed an optimum pH of 5.
View Article and Find Full Text PDFSorting nexin 5 (SNX5), a member of sorting nexin family, plays an important role in membrane trafficking, including the retrograde trafficking of the cation independent mannose 6-phosphate receptor (CI-M6PR) and macropinocytosis. Using ESI-LCMS/MS analysis, we confirmed that SNX5 serine 226 is phosphorylated. Since SNX5 forms heterodimers with SNX1 or SNX2, we examined the effect of phosphorylation at S226 on the heterodimer formations.
View Article and Find Full Text PDFJaw1/LRMP is characterized as a Type II integral membrane protein that is localized to endoplasmic reticulum, however, its physiological functions have been poorly understood. An alignment of amino acid sequence of Jaw1 with Klarsicht/ANC-1/Syne/homology (KASH) proteins, outer nuclear membrane proteins, revealed that Jaw1 has a partial homology to the KASH domain. Here, we show that the function of Jaw1 is to maintain nuclear shape in mouse melanoma cell line.
View Article and Find Full Text PDFUnlabelled: 1-Kestose is a key prebiotic fructooligosaccharide (FOS) sugar. Some β-fructofuranosidases (FFases) have high transfructosylation activity, which is useful for manufacturing FOS. Therefore, obtaining FFases that produce 1-kestose efficiently is important.
View Article and Find Full Text PDFβ-Fructofuranosidases belonging to glycoside hydrolase family (GH) 32 are enzymes that hydrolyze sucrose. Some GH32 enzymes also catalyze transfructosylation to produce fructooligosaccharides. We found that Aspergillus kawachii IFO 4308 β-fructofuranosidase (AkFFase) produces fructooligosaccharides, mainly 1-kestose, from sucrose.
View Article and Find Full Text PDFGlycoside hydrolases are divided into two groups, known as inverting and retaining enzymes, based on their hydrolytic mechanisms. Glycoside hydrolase family 63 (GH63) is composed of inverting α-glycosidases, which act mainly on α-glucosides. We previously found that Escherichia coli GH63 enzyme, YgjK, can hydrolyze 2-O-α-d-glucosyl-d-galactose.
View Article and Find Full Text PDFα-L-Arabinofuranosidases, belonging to the glycoside hydrolase family (GH) 62, hydrolyze the α-1,2- or α-1,3-bond to liberate L-arabinofuranose from the xylan backbone. Here, we determined the structure of the C-terminal catalytic domain of CcAbf62A, a GH62 α-L-arabinofuranosidase from Coprinopsis cinerea. CcAbf62A is composed of a five-bladed β-propeller, as observed in other GH62 enzymes.
View Article and Find Full Text PDF