In the era of synthetic biology, techniques for rapidly constructing a designer long DNA from short DNA fragments are desired. To realize this, we attempted to establish a method for one-step DNA assembly of unprecedentedly large numbers of fragments. The basic technology is the Ordered Gene Assembly in Bacillus subtilis (OGAB) method, which uses the plasmid transformation system of B.
View Article and Find Full Text PDFPlant-specific Rac/Rop small GTPases function as molecular switches for numerous signal transduction events, including defense responses. To understand the function of each of the seven Rac/Rop family members in rice, we studied the tissue-specific expression patterns of Rac/Rop genes by semi-quantitative reverse transcription-PCR (RT-PCR), and also Rac/Rop subcellular localization using green fluorescent protein (GFP) fusion proteins in transient expression systems. We also investigated the roles of these genes in disease resistance by testing single Rac/Rop-RNAi (RNA interference) plants against the rice blast pathogen Magnaporthe grisea.
View Article and Find Full Text PDFAnalysis of cellular components at multiple levels of biological information can provide valuable functional insights. We performed multiple high-throughput measurements to study the response of Escherichia coli cells to genetic and environmental perturbations. Analysis of metabolic enzyme gene disruptants revealed unexpectedly small changes in messenger RNA and proteins for most disruptants.
View Article and Find Full Text PDFUsing a direct somatic embryogenesis system in carrot, we examined the role of DNA methylation in the change of cellular differentiation state, from somatic to embryogenic. 5-Azacytidine (aza-C), an inhibitor of DNA methylation suppressed the formation of embryogenic cell clumps from epidermal carrot cells. Aza-C also downregulated the expression of DcLEC1c, a LEC1-like embryonic gene in carrot, during morphogenesis of embryos.
View Article and Find Full Text PDF