Quantum hydrodynamic theory (QHT) can describe some of the characteristic features of quantum electron dynamics that appear in metallic nanostructures, such as spatial nonlocality, electron spill-out, and quantum tunneling. Furthermore, numerical simulations based on QHT are more efficient than fully quantum mechanical approaches, as exemplified by time-dependent density functional theory using a jellium model. However, QHT involves kinetic energy functionals, the practical implementation of which typically induces significant numerical instabilities, particularly in nonlinear optical phenomena.
View Article and Find Full Text PDF