Publications by authors named "Takashi Takabatake"

Age at exposure is a critical factor that influences the risk of radiation-induced leukemia, which arises from hematopoietic stem and progenitor cells. However, little is known about the effect of age on the radiation response of these cells. In this study, we examined the radiation response of hematopoietic stem and progenitor cells in infant (1-week-old), juvenile (3-week-old), and adult (8- and 14-week-old) C3H/He mice, which are susceptible to radiation-induced myeloid leukemia.

View Article and Find Full Text PDF

Children are especially sensitive to ionizing radiation and chemical carcinogens, and limiting their cancer risk is of great public concern. Calorie restriction (CR) is a potent intervention for suppressing cancer. However, CR is generally not appropriate for children.

View Article and Find Full Text PDF
Article Synopsis
  • Radiation exposure accidents are rare but can occur anywhere, requiring prompt assessment and care from physicians for those affected.
  • Following the Tokaimura criticality accident in 1999, Japan strengthened its radiation emergency medical preparedness by classifying hospitals into three levels based on location and capabilities.
  • The Great East Japan Earthquake in 2011 severely impacted TEPCO's nuclear plants in Fukushima, resulting in a significant release of radionuclides while exposing gaps in medical staff's radiation knowledge during emergencies.
View Article and Find Full Text PDF

Chromosomal amplifications and deletions are thought to be important events in spontaneous and radiation-induced carcinogenesis. To clarify how ionizing radiation induces mammary carcinogenesis, we characterized genomic copy number aberrations for gamma-ray-induced rat mammary carcinomas using microarray-based comparative genomic hybridization. We examined 14 carcinomas induced by gamma radiation (2 Gy) and found 26 aberrations, including trisomies of chromosomes 4 and 10 for three and one carcinomas, respectively, an amplification of the chromosomal region 1q12 in two carcinomas, and deletions of the chromosomal regions 3q35q36, 5q32 and 7q11 in two, two and four carcinomas, respectively.

View Article and Find Full Text PDF

Accurate cancer risk assessment of low-dose radiation poses many challenges that are partly due to the inability to distinguish radiation-induced tumors from spontaneous ones. To elucidate characteristic features of radiation-induced tumors, we analyzed 163 medulloblastomas that developed either spontaneously or after X-ray irradiation at doses of 0.05-3 Gy in Ptch1 heterozygous mice.

View Article and Find Full Text PDF

Inactivation of the phosphatase and tensin homolog gene (Pten) occurs via multiple tissue-dependent mechanisms including epigenetic silencing, point mutations, insertions, and deletions. Although frequent loss of heterozygosity around the Pten locus and plausible involvement of epigenetic silencing have been reported in radiation-induced thymic lymphomas, the proportion of lymphomas with inactivated Pten and the spectrum of causal aberrations have not been extensively characterized. Here, we assessed the mode of Pten inactivation by comprehensive analysis of the expression and alteration of Pten in 23 radiation-induced thymic lymphomas developed in B6C3F1 mice.

View Article and Find Full Text PDF

Ionizing radiation is one of a few well-characterized etiologic factors of human breast cancer. Laboratory rodents serve as useful experimental models for investigating dose responses and mechanisms of cancer development. Using these models, a lot of information has been accumulated about mammary gland cancer, which can be induced by both chemical carcinogens and radiation.

View Article and Find Full Text PDF

Mammalian genomes contain numerous evolutionary harbored mobile elements, a part of which are still active and may cause genomic instability. Their movement and positional diversity occasionally result in phenotypic changes and variation by causing altered expression or disruption of neighboring host genes. Here, we describe a novel microarray-based method by which dispersed genomic locations of a type of retrotransposon in a mammalian genome can be identified.

View Article and Find Full Text PDF

Objective: High-dose radiation exposure induces acute myeloid leukemia (AML) in C3H mice, most of which have a frequent hemizygous deletion around the D2Mit15 marker on chromosome 2. This region includes PU.1, a critical candidate gene for initiation of leukemogenesis.

View Article and Find Full Text PDF

Radiation-induced thymic lymphoma in mice is a useful model for studying both the mechanism of radiation carcinogenesis and genetic susceptibility to tumor development. Using array-comparative genomic hybridization, we analyzed genome-wide changes in DNA copy numbers in radiation-induced thymic lymphomas that had developed in susceptible C57BL/6 and resistant C3H mice and their hybrids, C3B6F1 and B6C3F1 mice. Besides aberrations at known relevant genetic loci including Ikaros and Bcl11b and trisomy of chromosome 15, we identified strain-associated genomic imbalances on chromosomes 5, 10 and 16 and strain-unassociated trisomy of chromosome 14 as frequent aberrations.

View Article and Find Full Text PDF

We previously reported that mice chronically irradiated with low-dose-rate gamma rays had significantly shorter mean life spans than nonirradiated controls. This life shortening appeared to be due primarily to earlier death due to malignant lymphomas in the irradiated groups (Tanaka et al., Radiat.

View Article and Find Full Text PDF

Tbx2 and Tbx3 are considered to be cognate genes within a Tbx2/3/4/5 subfamily of T-box genes and are expressed in closely overlapping areas in a variety of tissues, including the eye. Herein, we show that misexpression of Tbx2 and Tbx3 in Xenopus embryos gave rise to defective eye morphogenesis, which was reminiscent of the defect caused by attenuated Sonic hedgehog (Shh) signaling. Indeed, Tbx2/3 misexpression suppressed Gli1, Gli2, Ptc2 and Pax2, mediators or targets of Hedgehog (Hh) signals.

View Article and Find Full Text PDF

We have examined the roles of BMP4, Shh, and retinoic acid in establishing the proximal-distal and dorsal-ventral axes in the developing Xenopus eye. Misexpression of BMP4 caused the absence of an optic stalk and the expansion of dorsal and distal markers, tbx2/3/5, and pax6, at the expense of ventral and proximal markers vax2 and pax2. When Shh or Noggin, an antagonist of BMPs, was misexpressed, the reverse expression patterns of these marker genes were observed.

View Article and Find Full Text PDF

Electroporation has led to new approaches to the analysis of gene regulation of the chick embryonic system. However, application of this method to Xenopus, another model organism of embryology, has left many difficulties to be overcome. The specially devised electrodes, the examination of luciferase activities expressed, and the direct visualization of green fluorescence protein allow us to optimize the conditions of electroporation for Xenopusembryos.

View Article and Find Full Text PDF

 pax-6 is thought to be a master control gene of eye development in species ranging from insects to mammals. We have isolated a pax-6 cDNA homolog of the newt, Cynops pyrrhogaster. RT-PCR and sequence analyses predicted four alternatively spliced forms derived from inclusion or exclusion of the region corresponding to exons 5a and 12 in the human pax-6 ortholog.

View Article and Find Full Text PDF

 EP37 is an epidermis-specific protein found in the developing embryo of the Japanese newt, Cynops pyrrhogaster. Our previous study predicted the presence of genes homologous to EP37, which show temporary shared expression at the turn of metamorphosis. In this study, we isolated and characterized three cDNAs encoding novel EP37 homologues; two from the skin of an adult newt and the other from swimming larva.

View Article and Find Full Text PDF

A cDNA encoding one of the epidermis-specific proteins designated as the spot 6 was isolated from the Cynops embryo. Cynops neurula cDNA library was constructed with the plasmid vector containing the promoter sequence for SP6 RNA polymerase. After transcription and translation in vitro the final protein products were screened for the presence of spot 6 by two-dimensional gel electrophoresis.

View Article and Find Full Text PDF

Two-dimensional gel electrophoresis was used to analyze protein synthesis in relation to neural and epidermal differentiation in Cynops pyrrhogaster embryo. Various regions of embryos at different developmental stages, from late morula to early neurula stages, were excised, radiolabelled with S-methionine, and the pattern of protein synthesis were compared. The following four types of protein spots were observed: (1) six proteins synthesized characteristically in the epidermal region of the embryo after gastrulation, (2) two proteins synthesized in both epidermal and endodermal regions, but not in other regions, after gastrulation, (3) a protein first detected at early blastula stage, of which expression was nearly constant in presumptive epidermis region but declined in the other regions, (4) the candidate for neural plate specific protein synthesized at a very high level in ectoderm explants treated with concanavalin A, a substance which evokes neural induction.

View Article and Find Full Text PDF