Publications by authors named "Takashi Sumigawa"

Dislocation motion under cyclic loading is of great interest from theoretical and practical viewpoints. In this paper, we develop a random walk model for the purpose of evaluating the diffusion coefficient of dislocation under cyclic loading condition. The dislocation behavior was modeled as a series of binomial stochastic processes (one-dimensional random walk), where dislocations are randomly driven by the external load.

View Article and Find Full Text PDF

The reaction-diffusion equation approach, which solves differential equations of the development of density distributions of mobile and immobile dislocations under mutual interactions, is a method widely used to model the dislocation structure formation. A challenge in the approach is the difficulty in the determination of appropriate parameters in the governing equations because deductive (bottom-up) determination for such a phenomenological model is problematic. To circumvent this problem, we propose an inductive approach utilizing the machine-learning method to search a parameter set that produces simulation results consistent with experiments.

View Article and Find Full Text PDF

Among many types of defects present in crystalline materials, dislocations are the most influential in determining the deformation process and various physical properties of the materials. However, the mathematical description of the elastic field generated around dislocations is challenging because of various theoretical difficulties, such as physically irrelevant singularities near the dislocation-core and nontrivial modulation in the spatial distribution near the material interface. As a theoretical solution to this problem, in the present study, we develop an explicit formulation for the nonsingular stress field generated by an edge dislocation near the zero-traction surface of an elastic medium.

View Article and Find Full Text PDF

Explicit and tractable formulation of the internal stress field around edge dislocations is indispensable for considering the mechanics of fine crystalline solids, because the motion of edge dislocations in a slanted direction with respect to the free surface often plays a vital role in the plastic deformation of the solids under loading. In this study, we formulated an analytical solution for the stress distribution that occurs around edge dislocations embedded in a semi-infinite elastic medium. This formulation is based on the image force method and the Airy stress function method; it describes the variation in the stress distribution with changes in the slanted angle between the traction-free flat surface of the medium and the Burgers vector of the edge dislocation.

View Article and Find Full Text PDF

Crystal defects often lead to an intriguing variety of catastrophic failures of materials and determine the mechanical properties. Here we discover that a dislocation, which was believed to be a source of plasticity, leads to brittle fracture in SrTiO. The fracture mechanism, , bond breaking at the dislocation core triggers crack initiation and subsequent fracture, is elucidated from an atomic view by hybrid quantum and molecular simulations and nanomechanical experiments.

View Article and Find Full Text PDF

Current synthetic elastomers suffer from the well-known trade-off between toughness and stiffness. By a combination of multiscale experiments and atomistic simulations, a transparent unfilled elastomer with simultaneously enhanced toughness and stiffness is demonstrated. The designed elastomer comprises homogeneous networks with ultrastrong, reversible, and sacrificial octuple hydrogen bonding (HB), which evenly distribute the stress to each polymer chain during loading, thus enhancing stretchability and delaying fracture.

View Article and Find Full Text PDF

Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries.

View Article and Find Full Text PDF

Brittle materials such as silicon fail via the crack nucleation and propagation, which is characterized by the singular stress field formed near the crack tip according to Griffith or fracture mechanics theory. The applicability of these continuum-based theories is, however, uncertain and questionable in a nanoscale system due to its extremely small singular stress field of only a few nanometers. Here, we directly characterize the mechanical behavior of a nanocrack via the development of in situ nanomechanical testing using a transmission electron microscope and demonstrate that Griffith or fracture mechanics theory can be applied to even 4 nm stress singularity despite their continuum-based concept.

View Article and Find Full Text PDF

This paper presents experimental results of vertical loading using an atomic force microscope (AFM) performed on a thin film consisting of nickel helical nanoelements (nanosprings) formed by glancing angle deposition (GLAD) technique. As a helical element has large reversible deformation limit in general, a characteristic behavior is expected on the yielding of the film. From the load versus displacement curves, we find the outstanding elastic limit of nickel nanosprings film.

View Article and Find Full Text PDF

The discovery of quasicrystals three decades ago unveiled a class of matter that exhibits long-range order but lacks translational periodicity. Owing to their unique structures, quasicrystals possess many unusual properties. However, a well-known bottleneck that impedes their widespread application is their intrinsic brittleness: plastic deformation has been found to only be possible at high temperatures or under hydrostatic pressures, and their deformation mechanism at low temperatures is still unclear.

View Article and Find Full Text PDF