Publications by authors named "Takashi Shinkawa"

The insect cuticle is non-cellular matrix secreted from a monolayer of epidermal cells. After abrasion of the larval cuticle of the silkworm, Bombyx mori, a protein with molecular mass of 135 kDa is newly detected in the cuticle. Mass spectrometric analysis of the tryptic fragments from this protein revealed that the 135-kDa protein is encoded by the Cb10 gene.

View Article and Find Full Text PDF

Protein glycosylation is a common post-translational modification that plays important roles in terms of protein function. However, analyzing the relationship between glycosylation and protein function remains technically challenging. This problem arises from the fact that the attached glycans possess diverse and heterogeneous structures.

View Article and Find Full Text PDF

Diacylglycerol kinase (DGK) is involved in the regulation of lipid-mediated signal transduction through the metabolism of a second messenger diacylglycerol. Of the DGK family, DGKζ, which contains a nuclear localization signal, localizes mainly to the nucleus but translocates to the cytoplasm under pathological conditions. However, the detailed mechanism of translocation and its functional significance remain unclear.

View Article and Find Full Text PDF

We performed here MS-based cell surface proteome profiling of HCT-116 cells by two distinct methods based on biotin labeling and glycoprotein capturing. In total, 742 biotinylated and 219 glycosylated proteins were identified by the biotin labeling and glycoprotein capturing, of which 224 and 138 proteins known to be located on plasma membrane were included, respectively, according to ingenuity pathway analysis. Although 104 plasma membrane proteins were identified by both methods, the rest of 154 were identified only by one.

View Article and Find Full Text PDF

We performed here MS-based phosphoproteomics using both metal oxide affinity chromatography (pSTY proteomics) and anti-phosphotyrosine antibody (pY proteomics). The former method identified mainly phospho-serine and -threonine of nuclear or cytoplasmic proteins, whereas the latter did phosphotyrosine including more plasma membrane proteins and kinases. The overlap between these two methods was limited (24 tyrosine phosphorylation sites out of 325) and, by combining the two, coverage of the signaling molecules was enhanced as exemplified by Erk signaling.

View Article and Find Full Text PDF

Identification of proteins in the mammalian growth cone has the potential to advance our understanding of this critical regulator of neuronal growth and formation of neural circuit; however, to date, only one growth cone marker protein, GAP-43, has been reported. Here, we successfully used a proteomic approach to identify 945 proteins present in developing rat forebrain growth cones, including highly abundant, membrane-associated and actin-associated proteins. Almost 100 of the proteins appear to be highly enriched in the growth cone, as determined by quantitative immunostaining, and for 17 proteins, the results of RNAi suggest a role in axon growth.

View Article and Find Full Text PDF

We developed a software program (titled Precursor Ion Calibration software for LTQ or, in short, PICsL) that increases the reliability of precursor ion assignations from LC-MS analysis using ultra zoom scanning of LTQ linear ion trap MS and automatically corrects the assignations. Although existing software calculates the theoretical isotopic distribution according to m/z with a computational algorithm, our method simply searches for ions close to the theoretical mass value using both MS/MS raw data and Mascot search result files, followed by a second database search that identifies the proteins using the regenerated peak list files. Our software program mimics the manual inspection of the spectral data of precursor ions and is expected to be applicable not only for low resolution MS, such as LTQ, but also for a wide variety of MS instruments.

View Article and Find Full Text PDF

Membrane-type 1 matrix metalloproteinase 1 (MT1-MMP) is a potent modulator of the pericellular microenvironment and regulates cellular functions in physiological and pathological settings in mammals. MT1-MMP mediates its biological effects through cleavage of specific substrate proteins. However, our knowledge of MT1-MMP substrates remains limited.

View Article and Find Full Text PDF

Membrane-type 1 matrix metalloproteinase (MT1-MMP), a powerful modulator of the pericellular environment, promotes migration, invasion, and proliferation of cells. To perform its potent proteolytic activity in a controlled manner, MT1-MMP has to be regulated precisely. However, our knowledge about substrates and regulatory proteins is still very limited.

View Article and Find Full Text PDF

Here, we report for the first time a comparative phosphoproteomic analysis of distinct tumor cell lines in the presence or absence of the microtubule-interfering agent nocodazole. In total, 1525 phosphorylation sites assigned to 726 phosphoproteins were identified using LC-MS-based technology following phosphopeptide enrichment. Analysis of the amino acid composition surrounding the identified in vivo phosphorylation sites revealed that they could be classified into two motif groups: pSer-Pro and pSer-Asp/Glu.

View Article and Find Full Text PDF

Syntaxin 18, a soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) protein implicated in endoplasmic reticulum (ER) membrane fusion, forms a complex with other SNAREs (BNIP1, p31, and Sec22b) and several peripheral membrane components (Sly1, ZW10, and RINT-1). In the present study, we showed that a peripheral membrane protein encoded by the neuroblastoma-amplified gene (NAG) is a subunit of the syntaxin 18 complex. NAG encodes a protein of 2371 amino acids, which exhibits weak similarity to yeast Dsl3p/Sec39p, an 82-kDa component of the complex containing the yeast syntaxin 18 orthologue Ufe1p.

View Article and Find Full Text PDF

Although parvulin (Par14/eukaryotic parvulin homolog), a peptidyl-prolyl cis-trans isomerase, is found associated with the preribosomal ribonucleoprotein (pre-rRNP) complexes, its roles in ribosome biogenesis remain undetermined. In this study, we describe a comprehensive proteomics analysis of the Par14-associated pre-rRNP complexes using LC-MS/MS and a knockdown analysis of Par14. Together with our previous results, we finally identified 115 protein components of the complexes, including 39 ribosomal proteins and 54 potential trans-acting factors whose yeast homologs are found in the pre-rRNP complexes formed at various stages of ribosome biogenesis.

View Article and Find Full Text PDF

Although RecQ5beta is a ssDNA (single-stranded DNA)-stimulated ATPase and an ATP-dependent DNA helicase with strand-annealing activities, its cellular function remains to be explored. In the present paper, we used immunopurification and MS-based analyses to show that human DNA helicase RecQ5beta is associated with at least four RNAP II (RNA polymerase II) subunits. RecQ5beta was also present in complexes immunoprecipitated using three different antibodies against the large subunit of RNAP II, or in complexes immunoprecipitated using an anti-FLAG antibody against either FLAG-RNAP II 33 kDa subunit or FLAG-Pin1.

View Article and Find Full Text PDF

Protein glycosylation is one of the most common post-translational modifications in eukaryotes and affects various aspects of protein structure and function. To facilitate studies of protein glycosylation, we paired glycosylation site-specific stable isotope tagging of lectin affinity-captured N-linked glycopeptides with mass spectrometry and determined 1,465 N-glycosylated sites on 829 proteins expressed in Caenorhabditis elegans. The analysis shows the diversity of protein glycosylation in eukaryotes in terms of glycosylation sites and oligosaccharide structures attached to polypeptide chains and suggests the substrate specificity of oligosaccharyltransferase, a single multienzyme complex in C.

View Article and Find Full Text PDF

The female gamete, the egg cell, is a specially differentiated haploid cell that develops into an embryo following fertilization. In the present study, we analyzed egg cell lysates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent mass spectrometry-based proteomics technology and identified the major proteins expressed in rice egg cells. The proteins identified included glyceraldehyde-3-phosphate dehydrogenase, ascorbate peroxidase and heat shock protein 90.

View Article and Find Full Text PDF

We describe the software, STEM (STrategic Extractor for Mascot's results), which efficiently processes large-scale mass spectrometry-based proteomics data. V (View)-mode evaluates the Mascot peptide identification dataset, removes unreliable candidates and redundant assignments, and integrates the results with key information in the experiment. C (Comparison)-mode compares peptide coverage among multiple datasets and displays proteins commonly/specifically found therein, and processes data for quantitative studies that utilize conventional isotope tags or tags having a smaller mass difference.

View Article and Find Full Text PDF

A protein subset expressed in the mouse embryonic stem (ES) cell line, E14-1, was characterized by mass spectrometry-based protein identification technology and data analysis. In total, 1790 proteins including 365 potential nuclear and 260 membrane proteins were identified from tryptic digests of total cell lysates. The subset contained a variety of proteins in terms of physicochemical characteristics, subcellular localization, and biological function as defined by Gene Ontology annotation groups.

View Article and Find Full Text PDF

The ubiquitin E3 protein ligase Nedd4-2 is a physiological regulator of the epithelial sodium channel ENaC, which is essential for transepithelial Na+ transport and is linked to Liddle's syndrome, an autosomal dominant disorder of human salt-sensitive hypertension. Nedd4-2 function is negatively regulated by phosphorylation via a serum- and glucocorticoid-inducible protein kinase (Sgk1), which serves as a mechanism to inhibit the ubiquitination-dependent degradation of ENaC. We report here that 14-3-3 proteins participate in this regulatory process through a direct interaction with a phosphorylated form of human Nedd4-2 (a human gene product of KIAA0439, termed hNedd4-2).

View Article and Find Full Text PDF

In most flowering plants, the female gametophyte develops in an ovule deeply embedded in the ovary. Through double fertilization, the egg cell fuses with the sperm cell, resulting in a zygote, which develops into the embryo. In the present study, we analyzed egg cell lysates by polyacrylamide gel electrophoresis and subsequent mass spectrometry-based proteomics technology, and identified major protein components expressed in the egg cell.

View Article and Find Full Text PDF

To find novel pharmacological tools useful for analyzing the molecular mechanism of apoptosis from natural resources, in the present study, we examined the activity of IC101, a cyclic depsipeptide isolated from Streptomyces sp. MJ202-72F3, to induce apoptosis in the L1210 cell line. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that IC101 caused a concentration-dependent cell death with a 50% effective concentration value of 20 nM.

View Article and Find Full Text PDF

BMH1 and BMH2 encode Saccharomyces cerevisiae 14-3-3 homologues whose exact functions have remained unclear. The present work compares the transcriptomic and proteomic profiles of the wild type and a BMH1/2-deficient S. cerevisiae mutant (bmhDelta) using DNA microarrays and two-dimensional polyacrylamide gel electrophoresis.

View Article and Find Full Text PDF

Horizontally transferred genes are believed to play a critical role in the divergence of bacterial strains from a common ancestor, but whether all of these genes express functional proteins in the cell remains unknown. Here, we used an integrated LC-based protein identification technology to analyze the proteome of Escherichia coli strain K12 (JM109) and identified 1,480 expressed proteins, which are equivalent to approximately 35% of the total open reading frames predicted in the genome. This subset contained proteins with cellular abundance of several dozens to hundreds of thousands of copies, and included nearly all types of proteins in terms of chemical characteristics, subcellular distribution, and function.

View Article and Find Full Text PDF

Protein constituents of the postsynaptic density (PSD) fraction were analysed using an integrated liquid chromatography (LC)-based protein identification system, which was constructed by coupling microscale two-dimensional liquid chromatography (2DLC) with electrospray ionization (ESI) tandem mass spectrometry (MS/MS) and an automated data analysis system. The PSD fraction prepared from rat forebrain was solubilized in 6 m guanidium hydrochloride, and the proteins were digested with trypsin after S-carbamoylmethylation under reducing conditions. The tryptic peptide mixture was then analysed with the 2DLC-MS/MS system in a data-dependent mode, and the resultant spectral data were automatically processed to search a genome sequence database for protein identification.

View Article and Find Full Text PDF

Fibrillarin (FIB, Nop1p in yeast) is an RNA methyltransferase found not only in the fibrillar region of the nucleolus but also in Cajal bodies. FIB is essential for efficient processing of preribosomal RNA during ribosome biogenesis, although its precise function in this process and its role in Cajal bodies remain uncertain. Here, we demonstrate that the human FIB N-terminal glycine- and arginine-rich domain (residues 1-77) and its spacer region 1 (78-132) interact with splicing factor 2-associated p32 (SF2A-p32) and that the FIB methyltransferase-like domain (133-321) interacts with protein-arginine methyltransferase 5 (PRMT5, Janus kinase-binding protein 1).

View Article and Find Full Text PDF