Bacterially expressed recombinant proteins are widely used for producing specific antibodies. Unfortunately, many recombinant proteins are recovered as insoluble materials, so-called inclusion bodies. Inclusion bodies are rather advantageous from a point of view of immunogens because fairly pure proteins can be feasibly extracted from the inclusion bodies.
View Article and Find Full Text PDFDitercalinium chloride was originally synthesized for use as an anticancer drug and was then found to deplete mitochondrial DNA. Ethidium bromide is widely used to deplete mitochondrial DNA and produce mitochondrial DNA-less cell lines. Although ethidium bromide is used in the case of human cell lines, it frequently fails to deplete mitochondrial DNA in mouse cells.
View Article and Find Full Text PDFMammalian mitochondria contain strong nuclease activity. Endonuclease G (endoG), which predominantly resides in mitochondria, accounts for a large part of this nuclease activity. It has been proposed to act as an RNase H-like nuclease on RNA.
View Article and Find Full Text PDFDuring replication, human mitochondrial DNA (mtDNA) takes on a triple-stranded structure known as a D-loop, which is implicated in replication and transcription. 1-Methyl-4-phenylpyridinium ion (MPP+), a toxin inducing parkinsonism, inhibits mtDNA replication, possibly by resolving the D-loops. For initiation of mtDNA replication, mitochondria are thought to have another triple-stranded structure, an R-loop.
View Article and Find Full Text PDFDuring replication, mitochondrial DNA (mtDNA) takes on a triple-stranded structure called a D-loop. Although their physiological roles are not understood, D-loops are implicated in replication and transcription of mtDNA. Little is known about the turnover of D-loops.
View Article and Find Full Text PDF