Publications by authors named "Takashi Obayashi"

We examined the femtosecond nonresonant ionization of organic amines with vertical ionization potentials as low as 5.95 eV. The quantitative evaluation of suppressed ionization relative to the single active electron approximation model was done by comparing the saturation intensity, I(sat), in experiments and theory.

View Article and Find Full Text PDF

A series of 5-spirocyclohexyl-3-(2,6-dimethylphenyl)-1,5-dihydro-2H-pyrrol-2-one derivatives (3) with various substituents on the spirocyclohexyl ring was synthesized and evaluated for its insecticidal activity against the aphid, Myzus persicae. Substituents at the 1- and 4-positions of the dihydropyrrole ring were also varied to optimize the activity. An investigation of the structure-activity relationship revealed that methoxy, alkoxyalkoxy, ethylenedioxy and methoxyimino groups were favorable as substituents at the 4-position of the spirocyclohexyl ring.

View Article and Find Full Text PDF

This paper reports the synthesis and insecticidal activity of a new type of dihydropyrrole derivatives with sulfur moieties such as sulfanyl, sulfinyl, and sulfonyl groups at the 1-position. These derivatives exhibited high insecticidal potency against Nilaparvata lugens and Nephotettix cincticeps. Investigation of the structure-activity relationships revealed that the alkoxycarbonyloxy groups at the 4-position tended to increase the systemic insecticidal activity.

View Article and Find Full Text PDF

This paper reports the synthesis and insecticidal activity of a series of novel 4-hydroxy-3-mesityl-1-methoxymethoxy-1,5-dihydro-2H-pyrrol-2-one derivatives, in which the substituents at the 5-position were varied with a number of alkyl and spirocycloalkyl groups. Investigation of the structure-activity relationships revealed that small alkyl and spirocyclohexyl groups had a favorable effect on the insecticidal activity of these agents against Myzus persicae.

View Article and Find Full Text PDF

A new series of N-oxydihydropyrrole derivatives was synthesized and evaluated for insecticidal activity against Nilaparvata lugens and Myzus persicae. Various substituents were introduced to the 1-position of the dihydropyrrole ring, and the derivatives obtained exhibited systemic and/or contact insecticidal activity. The structure-activity relationship revealed that small alkyoxy and alkoxyalkoxy groups were more favorable than alkylcarbonyloxy, alkoxycarbonyloxy, or sulfonyloxy groups as substituents at the 1-position.

View Article and Find Full Text PDF