This study aimed to evaluate the radiation doses (peak skin dose (PSD) and bilateral lens dose) for each interventional neuroradiology procedure. A direct measurement system consisting of small radiophotoluminescence glass dosimeter chips and a dosimetry cap made of thin stretchable polyester was used for radiation dosimetry. The mean PSDs for each procedure were 1565 ± 590 mGy (simple technique coil embolization (STCE) cases), 1851 ± 825 mGy (balloon-assisted coil embolization (BACE) cases), 2583 ± 967 mGy (stent-assisted coil embolization (SACE) cases), 1690 ± 597 mGy (simple flow-diverter stenting (FDS) cases), and 2214 ± 726 mGy (FDS + coiling cases).
View Article and Find Full Text PDFWith the International Commission on Radiological Protection's (ICRP) reduction in the radiation dose threshold for cataracts, evaluating and preventing radiation exposure to the lens of the eye among interventional radiology (IR) staff have become urgent tasks. In this study, we focused on differences in lens-equivalent dose (H) to which IR nurses in three hospitals were exposed and aimed to identify factors underlying these differences. According to analyses of time-, distance-, and shielding-related factors, the magnitude of the H dose to which IR nurses were exposed could be explained not by time or shielding but by the distance between the X-ray exposure field and the location of the IR nurse.
View Article and Find Full Text PDFChronic radiation exposure increases the risk of skin damage of medical personnel engaged in radiology. However, hand dose measurements in computed tomography (CT) for diagnostic purposes have not been evaluated. The occupational radiation dose to the hands of CT assistants was herein investigated to evaluate its compliance with the equivalent dose limit for the hand (500 mSv/year).
View Article and Find Full Text PDFInterventional radiology (IR) physicians must be equipped with personal passive dosimeters and personal protective equipment (PPE); however, they are inconsistently used. Therefore, we aimed to explore practical measures to increase PPE usage and ascertain whether these measures could lead to an actual decrease in exposure doses to IR physicians. Dosimeters and PPE were visually inspected.
View Article and Find Full Text PDFThe purpose of this study was to evaluate the effectiveness of organ effect modulation (OEM) in reducing the lens dose in 4D computed tomography (CT) of the head in volume-acquisition (NVA) mode. Six radiophotoluminescent dosemeters were placed on the head of a RANDO phantom. The doses absorbed by the organs and image noise change rate were determined.
View Article and Find Full Text PDFWe demonstrate a practical calibration method and its applicability for a commercially available radiophotoluminescence dosemeter (RPLD), i.e. the GD-352M (AGC Techno Glass, Shizuoka, Japan) to eye lens dose monitoring, by performing the calibration according to the ISO recommendations.
View Article and Find Full Text PDFWe manufactured a wearable particle monitor (WPM), which is a simple and low-cost dust monitor. We aimed to evaluate the usefulness of the device by using it and location information of a Global Navigation Satellite System (GNSS) to measure dust generation in outdoor workplaces. We used nine WPMs and a particle counter KC-52 to measure in parallel the dust concentration diffusing standard particles in a dust exposure apparatus to evaluate the measurability of the WPM, and visualized dust generation in outdoor workplaces to evaluate its usability.
View Article and Find Full Text PDFObjective: To meet the new standard of the annual dose limit for the eye lens recommended by the International Commission on Radiation Protection, radiation doses of neuroendovascular procedures in Japanese institutions were investigated.
Methods: Radiation doses to operators involved in 304 neuroendovascular procedures at 30 Japanese institutions were prospectively surveyed. The institutions recruited at an annual meeting of the Japanese Society for Neuroendovascular Therapy participated voluntarily.
Purpose: We investigated occupational dose to the lens of the eye for physicians engaged in radiology procedures. We evaluated the potential for compliance with the new-equivalent dose limits to the lens of the eye. Further, a "multiple radiation protection" protocol was proposed according to the basic principles of occupational health, and its effectiveness was estimated.
View Article and Find Full Text PDFIonizing radiation exposure affects the redox state in vivo. Recently, whole-blood antioxidant capacity (WBAC) has been reported to decrease in a dose-dependent manner after acute total body irradiation (TBI). However, changes in WBAC after localized and chronic irradiations have not been reported.
View Article and Find Full Text PDFPurpose: An augmented reality (AR) application to help medical staff involved in interventional radiology (IR) learn how to properly use ceiling-suspended radiation shielding screens was created, and its utility was tested from the perspective of learner motivation.
Method: The distribution of scattered radiation in an angiography room was visualized with an AR application in three settings: when a ceiling-suspended radiation shielding screen is not used (incorrect); when there is a gap between the bottom edge of the shielding screen and the patient's torso (incorrect); and when there is no gap between the bottom edge of the shielding screen and the patient's torso (correct). This AR application was used by 33 medical staff, after which an Instructional Materials Motivation Survey (IMMS) based on the John Keller's ARCS (four categories of Attention, Relevance, Confidence, and Satisfaction) Motivation Model, consisting of 36-items with responses on a 5-point (1-5) Likert scale, was conducted.
A short curtain that improves on the low versatility of existing long curtains was developed as a dedicated radiation protective device for the over-table tube fluorographic imaging units. The effect of this short curtain in preventing cataracts was then examined. First, the physician lens dose reduction rate was obtained at the position of the lens.
View Article and Find Full Text PDFRadiation exposure has multiple effects on the brain, behavior and cognitive functions. It has been reported that high-dose (>20 Gy) radiation-induced behavior and cognitive aberration partly associated with severe tissue destruction. Low-dose (<3 Gy) exposure can occur in radiological disasters and cerebral endovascular treatment.
View Article and Find Full Text PDFIonizing radiation exposure may not only cause acute radiation syndrome, but also an increased risk of late effects. It has been hypothesized that induction of chronic oxidative stress mediates the late effects of ionizing radiation. However, only a few reports have analyzed changes in long-term antioxidant capacity after irradiation in vivo.
View Article and Find Full Text PDFPurpose: In cerebral angiography, for diagnosis and interventional neuroradiology, cone-beam computed tomography (CBCT) scan is frequently performed for evaluating brain parenchyma, cerebral hemorrhage, and cerebral infarction. However, the patient's eye lens is more frequently exposed to excessive doses in these scans than in the previous angiography and interventional neuroradiology (INR) procedures. Hence, radioprotection for the lenses is needed.
View Article and Find Full Text PDFPurpose: We investigated occupational dose to the lens of the eye for CT-assisting personnel for diagnostic purposes using a radio-photoluminescent glass dosimeter (RPLD) and evaluate compliance with the new equivalent dose limit for the lens of the eye (20 mSv/year). Further, we proposed the implementation of "multiple protective measures" and estimated its effect.
Method: An eye lens dosimeter clip was developed specifically to attach RPLDs inside radiation safety glasses in an L-shape.
Understanding the maximum skin dose is important for avoiding tissue reactions in cerebral angiography. In this study, we devised a method for using digital imaging and communication in medicine-radiation dose structured report (DICOM-RDSR) data to accurately estimate the maximum skin dose from the total air kerma at the patient entrance reference point (Total K). Using a test data set ( = 50), we defined the mean ratio of the maximum skin dose obtained from measurements with radio-photoluminescence glass dosimeters (RPLGDs) to the Total K as the conversion factor, CF, and compared the accuracy of the estimated maximum skin dose obtained from multiplying Total K by CF (Estimation Model 1) with that of the estimated maximum skin dose obtained from multiplying Total K by the functional conversion factor CF (Estimation Model 2).
View Article and Find Full Text PDFNihon Hoshasen Gijutsu Gakkai Zasshi
July 2020
Japanese Diagnostic Reference Levels (DRLs) were released as "Japan DRLs 2015" from Japan Network for Research and Information on Medical Exposure (J-RIME) in June 2015. In "Japan DRLs 2015", DRLs in angiography and interventional procedures are set at a fluoroscopic dose rate of 20 mGy/min at the interventional reference point using a phantom. In order to achieve optimization with DRLs, then it need to be revised regularly.
View Article and Find Full Text PDFBiodosimetry is a useful method for estimating personal exposure doses to ionizing radiation. Studies have identified metabolites in non-cellular biofluids that can be used as markers in biodosimetry. Levels of metabolites in blood cells may reflect health status or environmental stresses differentially.
View Article and Find Full Text PDFThe purpose of this study was to measure the peak skin dose (PSD) and bilateral lens doses using radiophotoluminescence glass dosimeters and to determine the factors influencing the radiation dose in cases of cerebral aneurysm treated with pipeline embolization devices (PEDs). The cumulative dose, PSD and right and left lens doses were 3818.1 ± 1604.
View Article and Find Full Text PDFIonizing radiation (IR) and cisplatin are frequently used cancer treatments, although the mechanisms of error-prone DNA repair-mediated genomic instability after anticancer treatment are not fully clarified yet. RECQL4 mutations mainly in the C-terminal region of the RECQL4 gene lead to the cancer-predisposing Rothmund-Thomson syndrome, but the function of RECQL4ΔC (C-terminus deleted) in error-prone DNA repair remains unclear. We established several RECQL4ΔC cell lines and found that RECQL4ΔC cancer cells, but not RECQL4ΔC nontumorigenic cells, exhibited IR/cisplatin hypersensitivity.
View Article and Find Full Text PDFClinical radiodiagnosis and radiotherapy sometimes induce tissue damage and/or increase the risk of cancer in patients. However, in radiodiagnosis, a reduction in the exposure dose causes a blockier image that is not acceptable for diagnosis. Approximately 70% of DNA damage is induced via reactive oxygen species and/or radicals created during X-ray irradiation.
View Article and Find Full Text PDFNihon Hoshasen Gijutsu Gakkai Zasshi
July 2019
To optimize the radiation protection of patients, we investigated the possibility of constructing the diagnostic reference levels (DRLs) by imaging objective/disease group using display value of the blood vessel imaging apparatus (air kerma-area product: P, air kerma at the patient entrance reference point: K) in cerebral angiography. We used P and K recorded during surgery of 997 patients at our hospital, and classified them according to the purpose of imaging (diagnostic cerebral angiography or neuro interventional radiology) and disease group. Neuro interventional radiology (P: 268±155 Gy・cm, K: 2420±1462 mGy) was significantly higher than that of diagnostic cerebral angiography (P: 161±70 Gy・cm, K: 1112±485 mGy), (Mann-Whitney test, P<0.
View Article and Find Full Text PDF