Publications by authors named "Takashi Kuwahata"

Effects of milnacipran (MIL), a serotonin and noradrenaline reuptake inhibitor (SNRI), on synaptic transmission were examined in the rat locus coeruleus (LC). Bath-application of MIL produced a hyperpolarization associated with a decrease in input resistance of LC neurons. The MIL-induced hyperpolarization reversed polarity near the equilibrium potential of K+.

View Article and Find Full Text PDF

Effects of milnacipran (MIL), a selective serotonin and noradrenaline (NA) reuptake inhibitor, on the neuronal excitability and synaptic transmission in the rat locus coeruleus (LC) were examined by intracellular and whole-cell patch-clamp recording techniques. We compared MIL and methylphenidate (MPH), a selective NA and dopamine reuptake inhibitor, as a therapeutic agent for attention deficit/hyperactivity disorder. Application of MPH (1-100 microM) and MIL (1-100 microM) to artificial cerebrospinal fluid (ACSF) produced a hyperpolarizing response in LC neurons in a concentration-dependent manner.

View Article and Find Full Text PDF

Effects of adenosine (Ado) and adenosine 5'-triphosphate (ATP) on the membrane potential and synaptic transmission in neurons of the rat locus coeruleus (LC) were examined, in vitro. Ado (30-300 microM) produced a hyperpolarizing response and inhibited spontaneous firing activity in neurons of the rat LC. Ado decreased input resistance of LC neurons.

View Article and Find Full Text PDF

Effects of methylphenidate (MPH), an agent used clinically for the treatment of children presenting the attention-deficit/hyperactivity disorder (AD/HD), on synaptic transmission in the rat locus coeruleus (LC) were examined by intracellular recording methods. Bath-application of MPH (30 nM-3 microM) increased the amplitude of the inhibitory postsynaptic potential (IPSP), while it did not change the amplitude of the excitatory postsynaptic potential (EPSP). MPH increased the time-to-peak and the half-decay time of the IPSP in LC neurons.

View Article and Find Full Text PDF