Publications by authors named "Takashi Kuromori"

Salinity stress can greatly reduce seed production because plants are especially sensitive to salt during their reproductive stage. Here, we show that the sodium ion transporter AtHKT1;1 is specifically expressed around the phloem and xylem of the stamen in to prevent a marked decrease in seed production caused by salt stress. The stamens of AtHKT1;1 mutant under salt stress overaccumulate Na, limiting their elongation and resulting in male sterility.

View Article and Find Full Text PDF

Plant response to drought stress includes systems for intracellular regulation of gene expression and signaling, as well as inter-tissue and inter-organ signaling, which helps entire plants acquire stress resistance. Plants sense water-deficit conditions both via the stomata of leaves and roots, and transfer water-deficit signals from roots to shoots via inter-organ signaling. Abscisic acid is an important phytohormone involved in the drought stress response and adaptation, and is synthesized mainly in vascular tissues and guard cells of leaves.

View Article and Find Full Text PDF

The extraction of cellular contents from plant cells covered with cell walls remains a challenge, as it is physically hindered by the cell wall. We present a new microfluidic approach that leverages an intense pulsed electric field for permeabilizing the cell wall and a focused DC electric field for extracting the cellular contents selectively from a few targeted cells in a cluster of intact plant cells. We coupled the approach with on-chip fluorescence quantification of extracted molecules leveraging isotachophoresis as well as off-chip reverse transcription-quantitative polymerase chain reaction detecting extracted mRNA molecules.

View Article and Find Full Text PDF

The drought stress responses of vascular plants are complex regulatory mechanisms because they include various physiological responses from signal perception under water deficit conditions to the acquisition of drought stress resistance at the whole-plant level. It is thought that plants first recognize water deficit conditions in roots and that several molecular signals then move from roots to shoots. Finally, a phytohormone, abscisic acid (ABA) is synthesized mainly in leaves.

View Article and Find Full Text PDF

Abscisic acid (ABA), a stress hormone produced by plants to cope with various environmental stresses, has potential as a mobile molecule. Recently, several types of ABA transporters have been described. We previously found a membrane transporter, AtABCG25, that is involved in intercellular ABA transport in Arabidopsis thaliana.

View Article and Find Full Text PDF

Arabidopsis thaliana contains the putative K efflux transporters KEA1-KEA6, similar to KefB and KefC of Escherichia coli. KEA1-KEA3 are involved in the regulation of photosynthetic electron transport and chloroplast development. KEA4-KEA6 mediate pH regulation of the endomembrane network during salinity stress.

View Article and Find Full Text PDF

Plant growth is strictly controlled by cell division, elongation, and differentiation for which adequate supplies of intracellular ATP are required. However, it is unclear how changes in the amount of intracellular ATP affect cell division and growth. To reveal the specific pathway dependent on ATP concentration, we performed analyses on the mitochondria mutation .

View Article and Find Full Text PDF

Plant responses to drought stress have been analyzed extensively to reveal complex regulatory gene networks, including the detection of water deficit signals, as well as the physiological, cellular, and molecular responses. Plants recognize water deficit conditions at their roots and transmit this signal to their shoots to synthesize abscisic acid (ABA) in their leaves. ABA is a key phytohormone that regulates physiological and molecular responses to drought stress, such as stomatal closure, gene expression, and the accumulation of osmoprotectants and stress proteins.

View Article and Find Full Text PDF

To understand the integrative networks of signaling molecules, the sites of their biosynthesis and action must be clarified, particularly for phytohormones such as abscisic acid (ABA). The relationship between the sites of ABA biosynthesis and transport has been discussed extensively in the context of guard cells and stomatal regulation. However, guard cells are not the only site of ABA action.

View Article and Find Full Text PDF

Stomatal regulation is important for water transpiration from plants. Stomatal opening and closing are controlled by many transporter proteins in guard cells. AtABCG22 is a member of the ATP-binding cassette (ABC) transporters and is a stomatal regulator; however, the function of AtABCG22 has not yet been determined fully, although a mutant phenotype included a significant effect on stomatal status.

View Article and Find Full Text PDF

Water deficit caused by global climate changes seriously endangers the survival of organisms and crop productivity, and increases environmental deterioration. Plants' resistance to drought involves global reprogramming of transcription, cellular metabolism, hormone signalling and chromatin modification. However, how these regulatory responses are coordinated via the various pathways, and the underlying mechanisms, are largely unknown.

View Article and Find Full Text PDF

In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses.

View Article and Find Full Text PDF

Ascorbate is an antioxidant and coenzyme for various metabolic reactions in vivo. In plant chloroplasts, high ascorbate levels are required to overcome photoinhibition caused by strong light. However, ascorbate is synthesized in the mitochondria and the molecular mechanisms underlying ascorbate transport into chloroplasts are unknown.

View Article and Find Full Text PDF

Abscisic acid (ABA) is a phytohormone that responds to environmental stresses, such as water deficiency. Recent studies have shown that ABA biosynthetic enzymes are expressed in the vascular area under both nonstressed and water-stressed growth conditions. However, specific cells in the vasculature involved in ABA biosynthesis have not been identified.

View Article and Find Full Text PDF

Arabidopsis thaliana is one of the most popular experimental plants. However, only 40% of its genes have at least one experimental Gene Ontology (GO) annotation assigned. Systematic observation of mutant phenotypes is an important technique for elucidating gene functions.

View Article and Find Full Text PDF

It is poorly understood how plants control their growth by cell division, elongation, and differentiation. We have characterized a seedling-lethal mutant segregation distortion 3 (sd3) that showed a very dwarf phenotype when grown in the light and, in the dark, had short hypocotyls with reduced ploidy levels. The corresponding gene of SD3 encodes a protein with high similarity to yeast translocase on the inner mitochondrial membrane 21 (TIM21), which is a component of the TIM23 complex.

View Article and Find Full Text PDF

To identify candidate genes involved in Arabidopsis flavonoid biosynthesis, we applied transcriptome coexpression analysis and independent component analyses with 1388 microarray data from publicly available databases. Two glycosyltransferases, UGT79B1 and UGT84A2 were found to cluster with anthocyanin biosynthetic genes. Anthocyanin was drastically reduced in ugt79b1 knockout mutants.

View Article and Find Full Text PDF

In plants, pollen is the male gametophyte that is generated from microspores, which are haploid cells produced after meiosis of diploid pollen mother cells in floral anthers. In normal maturation, microspores interact with the tapetum, which consists of one layer of metabolically active cells enclosing the locule in anthers. The tapetum plays several important roles in the maturation of microspores.

View Article and Find Full Text PDF

In plants, water vapour is released into the atmosphere through stomata in a process called transpiration. Abscisic acid (ABA) is a key phytohormone that facilitates stomatal closure through its action on guard cells. Recently, ATP-binding cassette (ABC) transporter genes, AtABCG25 and AtABCG40, were shown to be involved in ABA transport and responses.

View Article and Find Full Text PDF

ABA is a major phytohormone that regulates a broad range of plant traits and is especially important for adaptation to environmental conditions. Our understanding of the molecular basis of ABA responses in plants improved dramatically in 2009 and 2010, banner years for ABA research. There are three major components; PYR/PYL/ RCAR (an ABA receptor), type 2C protein phosphatase (PP2C; a negative regulator) and SNF1-related protein kinase 2 (SnRK2; a positive regulator), and they offer a double negative regulatory system, [PYR/PYL/RCAR-| PP2C-| SnRK2].

View Article and Find Full Text PDF

Abscisic acid (ABA) is a phytohormone that plays an important role in responses to environmental stresses as well as seed maturation and germination. Intracellular signaling by ABA has been rigorously investigated in relation to stomatal guard-cell regulation, seed germination, and abiotic stress responses. However, intercellular regulation of ABA, including the molecular basis of ABA transport systems, has hardly been examined in any plant species.

View Article and Find Full Text PDF

It is well known that knocking out a gene in an organism often causes no phenotypic effect. One possible explanation is the existence of duplicate genes; that is, the effect of knocking out a gene is compensated by a duplicate copy. Another explanation is the existence of alternative pathways.

View Article and Find Full Text PDF

An improvement in plant production is increasingly important for a sustainable human society. For this purpose, understanding the mechanism of plant production, that is, the plant metabolic system, is an immediate necessity. After the sequencing of the Arabidopsis genome, it has become possible to obtain a bird's eye view of its metabolism by means of omics such as transcriptomics and proteomics.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: