Polyester fibers, comprising mostly poly(ethylene terephthalate) with high crystalline content, represent the most commonly produced plastic for ubiquitous textiles, and approximately 60 million tons are manufactured annually worldwide. Considering the social issues of mismanaged waste produced from used textile products, there is an urgent demand for sustainable waste polyester fiber recycling methods. We developed a low-temperature, rapid, and efficient depolymerization method for recycling polyester fibers.
View Article and Find Full Text PDFPolymer-supported catalysts have been of great interest in organic syntheses, but have suffered from the difficulty in obtaining direct structural information regarding the catalyst species embedded in the polymer due to the limitations of most analytical methods. Here, we show that dynamic nuclear polarization (DNP)-enhanced solid-state NMR is ideally positioned to characterize the ubiquitous cross-linked polystyrene (PS)-supported catalysts, thus enabling molecular-level understanding and rational development. Ammonium-based catalysts, which show excellent catalytic activity and reusability for the transesterification of methyl esters with glycidol, giving glycidyl esters in high yields, were successfully characterized by DNP N NMR spectroscopy at N natural abundance.
View Article and Find Full Text PDF