Publications by authors named "Takashi Kumazaki"

Multiplex high-performance liquid chromatograph-mass spectrometry (HPLC-MS), in which multiple HPLCs and one MS are hyphenated, is an approach for high throughput analysis in HPLC-MS. A general multiplex HPLC-MS method employs a column-switching technology, and only one HPLC is connected to one MS at a time. In the present study, we propose a novel multiplex HPLC-MS system for simultaneous HPLC-MS analyses.

View Article and Find Full Text PDF

P14C/N39C is the disulfide variant of the ovomucoid third domain from silver pheasant (OMSVP3) introducing an engineered Cys¹⁴-Cys³⁹ bond near the reactive site on the basis of the sequence homology between OMSVP3 and ascidian trypsin inhibitor. This variant exhibits a narrower inhibitory specificity. We have examined the effects of introducing a Cys¹⁴-Cys³⁹ bond into the flexible N-terminal loop of OMSVP3 on the thermodynamics of the reactive site peptide bond hydrolysis, as well as the thermal stability of reactive site intact inhibitors.

View Article and Find Full Text PDF

Anemonia elastase inhibitor (AEI) is a "nonclassical" Kazal-type elastase inhibitor from Anemonia sulcata. Unlike many nonclassical inhibitors, AEI does not have a cystine-stabilized alpha-helical (CSH) motif in the sequence. We chemically synthesized AEI and determined its three-dimensional solution structure by two-dimensional NMR spectroscopy.

View Article and Find Full Text PDF

The ovomucoid third domain from silver pheasant (OMSVP3), a typical Kazal-type inhibitor, strongly inhibits different serine proteases of various specificities, i.e., chymotrypsin, Streptomyces griseus protease, subtilisin, and elastase.

View Article and Find Full Text PDF

The three-dimensional solution structure of ascidian trypsin inhibitor (ATI), a 55 amino acid residue protein with four disulfide bridges, was determined by means of two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. The resulting structure of ATI was characterized by an alpha-helical conformation in residues 35-42 and a three-stranded antiparallel beta-sheet in residues 22-26, 29-32, and 48-50. The presence of an alpha-helical conformation was predicted from the consensus sequences of the cystine-stabilized alpha-helical (CSH) motif, which is characterized by an alpha-helix structure in the Cys-X(1)-X(2)-X(3)-Cys portion (corresponding to residues 37-41), linking to the Cys-X-Cys portion (corresponding to residues 12-14) folded in an extended structure.

View Article and Find Full Text PDF