The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration.
View Article and Find Full Text PDFCarbon nanofibers (CNF) with diameters of 20-130 nm with different morphologies were obtained from a botanical hydrocarbon: Turpentine oil, using ferrocene as catalyst source and sulfur as a promoter by simple spray pyrolysis method at 1,000 °C. The influence of sulfur concentration on the morphology of the carbon nanofibers was investigated. SEM, TEM, Raman, TGA/DTA, and BET surface area were employed to characterize the as-prepared samples.
View Article and Find Full Text PDF