Liquid cell transmission electron microscopy (LC-TEM) is a unique technique that permits in situ observations of various phenomena in liquids with high spatial and temporal resolutions. One difficulty with this technique is the control of the environmental conditions in the observation area. Control of the temperature ranging from room temperature to minus several tens of degrees Celsius, is desirable for controlling the supersaturation in various materials and for observing crystallization more easily.
View Article and Find Full Text PDFProcalcitonin (PCT), a widely used biomarker for bacterial infections, is sometimes measured in convulsion patients to distinguish bacterial infections including bacterial meningitis. However, serum PCT elevation is reported in several other conditions. This study assessed the diagnostic value of serum PCT concentrations in convulsion patients.
View Article and Find Full Text PDFMicrostructural changes during the martensitic transformation from face-centred cubic (FCC) to body-centred cubic (BCC) in an Fe-31Ni alloy were observed by scanning electron microscopy (SEM) with a newly developed Peltier stage available at temperatures to -75°C. Electron channelling contrast imaging (ECCI) was utilized for the in situ observation during cooling. Electron backscatter diffraction analysis at ambient temperature (20°C) after the transformation was performed for the crystallographic characterization.
View Article and Find Full Text PDFFor malignant tumours, treatment is rarely indicated in cases requiring mechanical ventilation management because such intensive care would engender a decrease in performance status. However, light sedation using dexmedetomidine might enable chemoradiation while accommodating activities of daily living. We experienced two cases of fatal tracheal invasion and airway stenosis of stage Ⅳ oesophageal cancer that were treated with chemoradiation or radiation under mechanical ventilation (one case was differential lung ventilation.
View Article and Find Full Text PDFTransmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) enable the visualization of three-dimensional (3D) microstructures ranging from atomic to micrometer scales using 3D reconstruction techniques based on computed tomography algorithms. This 3D microscopy method is called electron tomography (ET) and has been utilized in the fields of materials science and engineering for more than two decades. Although atomic resolution is one of the current topics in ET research, the development and deployment of intermediate-resolution (non-atomic-resolution) ET imaging methods have garnered considerable attention from researchers.
View Article and Find Full Text PDFAn in situ straining holder capable of tensile deformation and high-angle tilt for electron tomography was developed for polymeric materials. The holder has a dedicated sample cartridge, on which a variety of polymeric materials, such as microtomed thin sections of bulk specimens and solvent-cast thin films, can be mounted. Fine, stable control of the deformation process with nanoscale magnification was achieved.
View Article and Find Full Text PDFIn conventional transmission electron microscopy, specimens to be observed are placed in between the objective lens pole piece and therefore exposed to a strong magnetic field about 2 T. For a ferromagnetic specimen, magnetization of the specimen causes isotropic and anisotropic defocusing, deflection of the electron beam as well as deformation of the specimen, which all become more severe when the specimen tilted. Therefore electron tomography on a ferromagnetic crystalline specimen is highly challenging because tilt-series data sets must be acquired without changing the excitation condition of a specific diffraction spot.
View Article and Find Full Text PDFIntroductionMesoporous silica, SBA-15, is one of the best candidate for the supporting material of catalytic nanoparticles because of its relative large and controllable pore size and large specific surface area [1]. So far, various nanoparticles, such as Au, Pt and Pd, have been introduced into the pore for catalytic application [2]. The size of nanoparticles supported inside SBA-15 is restricted by that of the pore, and they are usually ranging from 2 nm and 50 nm in space.
View Article and Find Full Text PDFProperties of gold nanoparticles (AuNPs) are very different from bulk gold, in particular, highly dispersed AuNPs exhibit high catalytic activities on metal oxide supports. Catalytic activities of AuNPs are strongly dependent on: (i) size and morphology; (ii) synthesis methods; (iii) nature of the support; (iv) interaction between AuNPs and the support; and (v) oxidation state of AuNPs in the synthesized catalysts. A goal is to maintain the size and to prohibit aggregation of AuNPs, since aggregations deteriorate catalytic activities.
View Article and Find Full Text PDF