Publications by authors named "Takashi Chaen"

Mesenchymal stromal cells (MSCs), also known as fibro-adipogenic progenitors, play a critical role in muscle maintenance and sarcopenia development. Although analogous MSCs are present in various tissues, recent single-cell RNA-seq studies have revealed the inter-tissue heterogeneity of MSCs. However, the functional significance of MSC heterogeneity and its role in aging remain unclear.

View Article and Find Full Text PDF

Mesenchymal stromal cells in the muscle layer of the large intestine are essential for the regulation of intestinal motility. They form electrogenic syncytia with the smooth muscle and interstitial cells of Cajal (ICCs) to regulate smooth muscle contraction. Mesenchymal stromal cells are present in the muscle layer throughout the gastrointestinal tract.

View Article and Find Full Text PDF

Embryo implantation is a highly orchestrated process that involves blastocyst-uterine interactions. This process is confined to a defined interval during gestation referred to as the "window of embryo implantation receptivity". In mice this receptive period is controlled by ovarian estrogen and involves a coordination of blastocyst adhesion competence and uterine receptivity.

View Article and Find Full Text PDF

In the course of experiments to identify and characterize the factors that function in bovine conceptuses during peri-attachment periods, various transcripts related to the epithelial-mesenchymal transition (EMT) were found. In this study, RNA was extracted from different sets of days 17, 20, and 22 (day 0=day of estrous) bovine conceptuses and subjected to real-time PCR analysis as well as Western blotting, from which abundances of N-cadherin (CDH2), vimentin, matrix metalloproteinase 2 (gelatinase A, 72 kDa gelatinase, 72 kDa type IV collagenase) (MMP2), and matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase) (MMP9) mRNAs were determined on day 22, concurrent with (CDH1) mRNA and protein downregulation. Transcription factors in EMT processes were then analyzed and changes in snail homolog 2 (Drosophila) (SNAI), zinc finger E-box binding homeobox 1 (ZEB1), zinc finger E-box binding homeobox 2 (ZEB2), twist homolog 1 (Drosophila) (TWIST1), twist homolog 2 (Drosophila) (TWIST2), and Kruppel-like factor 8 (KLF8) transcripts were found in day 22 conceptuses, while confirming SNAI2 expression by Western blotting.

View Article and Find Full Text PDF