Publications by authors named "Takao Osako"

A rhodium-chiral diene complex immobilized on amphiphilic polystyrene-poly(ethylene glycol) (PS-PEG) resin (PS-PEG-diene*-Rh) has been developed. The immobilized rhodium-chiral diene complex (PS-PEG-diene*-Rh) efficiently catalyzed the asymmetric 1,4-addition of various arylboronic acids to cyclic or linear enones in water under batch conditions to give the corresponding β-arylated carbonyl compounds in excellent yields and with excellent enantioselectivity. The catalyst was readily recovered by simple filtration and reused 10 times without loss of its catalytic activity and enantioselectivity.

View Article and Find Full Text PDF

A highly enantioposition-selective copper-catalyzed azide-alkyne cycloaddition (CuAAC) of dialkynes bearing prochiral biaryls has been developed for the construction of 1,2,3-triazoles bearing axially chiral biaryl groups in up to 76% yield and up to 99% ee.

View Article and Find Full Text PDF

The coupling reaction of aryl iodides with arylboronic acids to give biaryl compounds can be efficiently performed without adding a transition metal catalyst. The key to success is the use of dimethyl carbonate as a solvent. This finding provides a new strategy for constructing a biaryl linkage.

View Article and Find Full Text PDF

The enantioselective O-H carbenoid insertion reaction with a new chiral copper(I) imidazoindolephosphine complex has been developed. The chiral copper(I) complex catalyzed the insertion of carbenoids derived from α-diazopropionates into the O-H bonds of various phenol derivatives to give the corresponding α-aryloxypropionates with up to 91% ee.

View Article and Find Full Text PDF

A discrete (mu-eta2:eta2-peroxo)Cu(II)2 complex, [Cu2(O2)(H-L)]2+, is capable of performing not only intramolecular hydroxylation of a m-xylyl linker of a dinucleating ligand but also intermolecular epoxidation of styrene via electrophilic reaction to the C=C bond and hydroxylation of THF by H-atom abstraction.

View Article and Find Full Text PDF

The structure and dioxygen-reactivity of copper(I) complexes R supported by N,N-bis(6-methylpyridin-2-ylmethyl)amine tridentate ligands L2R[R (N-alkyl substituent)=-CH2Ph (Bn), -CH2CH2Ph (Phe) and -CH2CHPh2(PhePh)] have been examined and compared with those of copper(I) complex (Phe) of N,N-bis[2-(pyridin-2-yl)ethyl]amine tridentate ligand L1(Phe) and copper(I) complex (Phe) of N,N-bis(pyridin-2-ylmethyl)amine tridentate ligand L3(Phe). Copper(I) complexes (Phe) and (PhePh) exhibited a distorted trigonal pyramidal structure involving a d-pi interaction with an eta1-binding mode between the metal ion and one of the ortho-carbon atoms of the phenyl group of the N-alkyl substituent [-CH2CH2Ph (Phe) and -CH2CHPh2(PhePh)]. The strength of the d-pi interaction in (Phe) and (PhePh) was weaker than that of the d-pi interaction with an eta2-binding mode in (Phe) but stronger than that of the eta1 d-pi interaction in (Phe).

View Article and Find Full Text PDF

Copper(II) complexes supported by bulky tridentate ligands L1(H) (N,N-bis(2-quinolylmethyl)-2-phenylethylamine) and L1(Ph) (N,N-bis(2-quinolylmethyl)-2,2-diphenylethylamine) have been prepared and their crystal structures as well as some physicochemical properties have been explored. Each complex exhibits a square pyramidal structure containing a coordinated solvent molecule at an equatorial position and a weakly coordinated counter anion (or water) at an axial position. The copper(II) complexes reacted readily with H(2)O(2) at a low temperature to give mononuclear hydroperoxo copper(II) complexes.

View Article and Find Full Text PDF

The reaction of p-substituted benzyl halides ((Y)BnX; X = Cl, Br, and I; Y = p-substituent, OMe, t-Bu, Me, H, F, Cl, and NO(2)) and copper(I) complexes supported by a series of (2-pyridyl)alkylamine ligands has been investigated to shed light on the mechanism of copper(I) complex mediated carbon-halogen bond activation, including ligand effects on the redox reactivity of copper(I) complexes which are relevant to the chemistry. For both the tridentate ligand (Phe)L(Pym2) [N,N-bis(2-pyridylmethyl)-2-phenylethylamine] and tetradentate ligand TMPA [tris(2-pyridylmethyl)amine] complexes, the C-C coupling reaction of benzyl halides proceeded smoothly to give corresponding 1,2-diphenylethane derivatives and copper(II)-halide complex products. Kinetic analysis revealed that the reaction obeys second-order kinetics both on the copper complex and the substrate; rate = k[Cu](2)[(Y)BnX](2).

View Article and Find Full Text PDF

A novel C-S bond formation reaction took place, when a lithium phenolate derivative was treated with a disulfide-bridged dicopper(I) complex or a bis(micro-thiolato)dicopper(II) complex under very mild conditions. The reaction has been suggested to proceed via a disulfide-bridged (micro-phenoxo)dicopper(I) complex as the common reaction intermediate. Copper(II) complexes of the modified ligands containing a thioether group (products of the C-S bond formation reaction) have been isolated and structurally characterized by X-ray analysis as model compounds of the active site of galactose oxidase.

View Article and Find Full Text PDF

Reactivity of the dicopper(I) and dicopper(II) complexes supported by novel polyamine ligands L1 (1,11-bis(6-methylpyridin-2-yl)-2,6,10-triaza-2,6,10-tribenzylundecane) and L2 (5-benzyl-1,9-bis(6-methylpyridin-2-yl)-2,8-bis(6-methylpyridin-2-ylmethyl)-2,5,8-triazanonane) towards O(2) and H(2)O(2), respectively, has been investigated in order to shed light on the ligand effects on Cu(2)/O(2) chemistry. The dicopper(I) complex of L1 (1a) readily reacted with O(2) in a 2:1 ratio at a low temperature (-94 degrees C) in acetone to afford a mixture of (mu-eta2.eta2-peroxo)dicopper(II) and bis(mu-oxo)dicopper(III) complexes.

View Article and Find Full Text PDF

Crystal structures of the copper(I) complexes 1(X), 2, and 3 of a series of tridentate ligands L1(X), L2, and L3, respectively (L1(X): p-substituted derivatives of N,N-bis[2-(2-pyridyl)ethyl]-2-phenylethylamine; X=H, Me, OMe, Cl, NO(2); L2: N,N-bis[2-(2-pyridyl)ethyl]-2-methyl-2-phenylethylamine; L3: N,N-bis[2-(2-pyridyl)ethyl]-2,2-diphenylethylamine) were solved to demonstrate that all the copper(I) complexes involve an eta(2) copper-arene interaction with the phenyl ring of the ligand sidearm. The Cu(I) ion in each complex has a distorted tetrahedral geometry consisting of the three nitrogen atoms (one tertiary amine nitrogen atom and two pyridine nitrogen atoms) and C(1)-C(2) of the phenyl ring of ligand sidearm, whereby the Cu-C distances of the copper-arene interaction significantly depend on the para substituents. The existence of the copper-arene interaction in a nonpolar organic solvent (CH(2)Cl(2)) was demonstrated by the observation of an intense MLCT band around 290 nm, and the magnitude of the interaction was evaluated by detailed analysis of the (1)H and (13)C NMR spectra and the redox potentials E(1/2) of the copper ion, as well as by means of the ligand-exchange reaction between the phenyl ring and CH(3)CN as an external ligand.

View Article and Find Full Text PDF

Ligand effects on the structures and redox reactivities of copper complexes have been examined using (2-pyridyl)alkylamine derivatives as the supporting ligands, where particular attention has been focused on the effects of the alkyl linker chain length connecting the tertiary amine nitrogen atom and the pyridine nucleus: N[bond]CH(2)[bond]Py (Pym) vs N[bond]CH(2)CH(2)[bond]Py (Pye). X-ray crystallographic analysis of the copper(I) complex of tridentate ligand (Phe)L(Pym2) [N,N-di(2-pyridylmethyl)-2-phenylethylamine] (complex 1) has demonstrated that it possesses a trigonal pyramidal geometry in which a d[bond]pi interaction with an eta(1)-binding mode exists between the metal ion and one of the ortho carbons of the phenyl ring of the ligand side arm (phenethyl). The result shows sharp contrast to the d[bond]pi interaction with an eta(2)-binding mode existing in the copper(I) complex of (Phe)L(Pye2) [N,N-di[2-(2-pyridyl)ethyl]-2-phenethylamine] (complex 2).

View Article and Find Full Text PDF

The first systematic studies on the oxidation of neutral phenols (ArOH) by the mu-eta(2):eta(2)-peroxo)dicopper(II) complex (A) and the bis(mu-oxo)dicopper(III) complex (B) supported by the 2-(2-pyridyl)ethylamine tridentate and didentate ligands L(Py2) and L(Py1), respectively, have been carried out in order to get insight into the phenolic O-H bond activation mechanism by metal-oxo species. In both cases (A and B), the C-C coupling dimer was obtained as a solely isolable product in approximately 50% yield base on the dicopper-dioxygen (Cu(2)/O(2)) complexes, suggesting that both A and B act as electron-transfer oxidants for the phenol oxidation. The rate-dependence in the oxidation of phenols by the Cu(2)/O(2) complexes on the one-electron oxidation potentials of the phenol substrates as well as the kinetic deuterium isotope effects obtained using ArOD have indicated that the reaction involves a proton-coupled electron transfer (PCET) mechanism.

View Article and Find Full Text PDF