Muscarinic M (M) receptors mediate a wide range of acetylcholine (ACh)-induced functions, including visceral smooth-muscle contraction and glandular secretion. Positive allosteric modulators (PAMs) can avoid various side effects of muscarinic agonists with their spatiotemporal receptor activation control and potentially better subtype selectivity. However, the mechanism of allosteric modulation of M receptors is not fully understood, presumably because of the lack of a potent and selective PAM.
View Article and Find Full Text PDFThe pharmacological profile of ASP2205 fumarate (ASP2205), a novel 5-HT receptor agonist, was evaluated in vitro and in vivo. ASP2205 showed potent and selective agonistic activity for the human 5-HT receptor, with an EC of 0.85 nM in the intracellular Ca mobilization assay.
View Article and Find Full Text PDFObjective: Stress urinary incontinence (SUI) is a common disease condition in elderly women, suggesting that its etiology may be linked to aging. To investigate the hypothesis that urethral dysfunction and histopathological changes are possible contributors to SUI in elderly women, several parameters of urethral function, as well as histological parameters, were compared between young and aged rats.
Methods: Virgin female rats were examined at 3 different ages, namely 3, 12, and 24 months, corresponding to young, middle-aged, and aged rats, respectively.
Introduction: The urethrogenital reflex (UGR) is used as a physiological animal model of the autonomic and somatic activity that accompanies ejaculatory-like reflexes (ELRs). Serotonin (5-HT) plays an important role in regulating ejaculation.
Aim: To examine the effects of intraurethral 5-HT on ELRs and to examine the effects of various 5-HT receptor subtypes on the 5-HT-induced changes in the ELRs.
Forkhead box transcription factor, class O (FOXO) is a mammalian homologue of DAF-16, which is known to regulate the lifespan of Caenorhabditis elegans and includes subfamilies of forkhead transcription factors such as AFX, FKHRL1, and FKHR. FKHR is phosphorylated on three sites (Thr-24, Ser-256, and Ser-319) in a phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner, thereby inhibiting death signals. We here documented dephosphorylation of FKHR following transient forebrain ischemia with its concomitant translocation into the nucleus in neurons in gerbil and mouse brains.
View Article and Find Full Text PDF