Publications by authors named "Takanori Watari"

ZnMoO:Tm,Yb,K nano-phosphors with intense NIR to NIR (excitation by 980 nm, emission at ∼800 nm) upconversion were synthesized by a facile hydrothermal method. The nanoparticles were of the order of 200-400 nm. The XRD patterns confirmed a single phase triclinic structure despite doping small amounts of RE and alkali ions.

View Article and Find Full Text PDF

The hydrothermal treatment of a titanium plate in a mixed aqueous solution of hydrogen peroxide and aqueous phosphoric acid under different conditions results in the formation of various titanium phosphate thin films. The films have various crystal structures such as Ti2O3(H2PO4)2·2H2O, α-titanium phosphate (Ti(HPO4)2·H2O), π-titanium phosphate (Ti2O(PO4)2·H2O), or low-crystallinity titanium phosphate and different morphologies that have not been previously reported such as nanobelts, microflowers, nanosheets, nanorods, or nanoplates. The present study also suggests the mechanisms behind the formation of these thin films.

View Article and Find Full Text PDF

Novel lanthanum borate (LaBO(3)) hollow nanospheres of size 34±2 nm have been reported for the first time by soft-template self-assembly process. Poly(styrene-b-acrylic acid-b-ethylene oxide) (PS-PAA-PEO) micelle with core-shell-corona architecture serves as an efficient soft template for fabrication of LaBO(3) hollow particles using sodium borohydride (NaBH(4)) and LaCl(3)⋅7H(2)O as the precursors. In this template, the PS block (core) acts as a template of the void space of hollow particle, the anionic PAA block (shell) serves as reaction field for metal ion interactions, and the PEO block (corona) stabilizes the polymer/lanthana composite particles.

View Article and Find Full Text PDF

We compared the apatite-forming ability of a sodium titanate nanotube thin film, an anatase-type titanium dioxide nanotube thin film, and a silver nanoparticle/silver titanate nanotube nanocomposite thin film, in simulated body fluid. The ability of the silver nanoparticle/silver titanate nanotube nanocomposite thin film is slightly higher than that of the anatase-type titanium dioxide nanotube thin film and significantly higher than that of the sodium titanate nanotube thin film. The high ability of the silver nanoparticle/silver titanate nanotube nanocomposite thin film is a newly observed phenomenon, which is probably due to the crystal structure of silver titanate--specifically, to the surface atomic arrangement, the large amount of Ti-OH formed on the nanotube surface, or both.

View Article and Find Full Text PDF

Antibacterial activity of various surfaces against methicillin-resistant Staphylococcus aureus (MRSA) was studied. Sodium titanate thin film with a porous network structure and sodium titanate nanotube thin film were formed on titanium surfaces through the reaction of titanium plates with NaOH solutions. Through a silver ion-exchange treatment, Na(+) ions in sodium titanate were exchanged with Ag(+) ions in silver acetate solution, along with the loading of silver nanoparticles on the titanate surfaces.

View Article and Find Full Text PDF

The effects of oxidation using HNO(3) on the properties of the carbonized wheat and barley straw were investigated by measuring different properties such as specific surface area, PZC, total surface acidic groups as well as FTIR and TG-DTA. A small decrease in the specific surface area due to pore blockage was observed after oxidation. After oxidation, the acidity was increased considerably and the point of zero charge shifted from approximately pH 9 to pH 2 in both types of carbon.

View Article and Find Full Text PDF

Grape waste generated in wine production is a cellulosic material rich in polyphenolic compounds which exhibits a high affinity for heavy metal ions. An adsorption gel was prepared from grape waste by cross-linking with concentrated sulfuric acid. It was characterized and utilized for the removal of Cr(VI) from synthetic aqueous solution.

View Article and Find Full Text PDF

Sodium titanate nanotube/titanium metal composites were synthesized by hydrothermal treatment of titanium metals with various morphologies such as plate, wire, mesh, microsphere, and microtube at 160 degrees C in aqueous NaOH solution and by the subsequent fixation treatment by calcination at 300 degrees C. The surface of the composite was covered with sodium titanate nanotubes with a diameter of approximately 7 nm, and the core part of the composite was titanium metal phase. The raw titanium metal acts as a template or a morphology-directing agent of micrometer size or more to arrange the nanotubes as well as a titanium source for the formation of nanotubes.

View Article and Find Full Text PDF

We used a microreactor for CdSe nanocrystal preparation and explored the effects of experimental conditions on the properties of the products. The particle growth kinetics and photoluminescence properties of the nanocrystals showed identical trends to previous reports, indicating the efficiency of the current method for analysis of rapid nanocrystal synthesis as well as industrial production of CdSe nanocrystals.

View Article and Find Full Text PDF