The progression of neuroinflammation after anti-parkinsonian therapy on the Parkinson's disease (PD) brain and in vivo evidence of the therapy purporting neuroprotection remain unclear. To elucidate this, we examined changes in microglial activation, nigrostriatal degeneration, and clinical symptoms longitudinally after dopamine replacement therapy in early, optimally-controlled PD patients with and without zonisamide treatment using positron emission tomography (PET). We enrolled sixteen PD patients (Hoehn and Yahr stage 1-2), and age-matched normal subjects.
View Article and Find Full Text PDFTo investigate the difference in results according to the mode of levodopa administration and the effect of zonisamide (ZNS), we analyzed the mRNA expression of dopaminergic and non-dopaminergic receptors in the striatum of Parkinson model rats in relation to the development of levodopa-induced dyskinesia (LID). Unilateral Parkinson model rats were subdivided into 4 groups and treated as follows: no medication (group N), continuous levodopa infusion (group C), intermittent levodopa injection (group I), and intermittent levodopa and ZNS injection (group Z). Two weeks after the treatment, LID was observed in group I and Z, but less severe in group Z.
View Article and Find Full Text PDFBackground: The neuroinflammatory glial response contributes to the degenerative process in Parkinson's disease (PD). However, the pattern of microglial progression remains unclear.
Methods: We evaluated microglial activation in early stage PD patients by quantifying changes in neuroinflammation using PET with [(11)C]DPA713, a selective PET tracer for microglial activation.
Zonisamide has been reported to have protective effects on epilepsy and Parkinson׳s disease and to work via various mechanisms of action, such as inhibition of monoamine oxidase-B and enhancement of tyrosine hydroxylase. Recently, it has been suggested that zonisamide itself shows neuroprotective actions. Therefore, in the present study we investigated the neuroprotective effects of zonisamide against endoplasmic reticulum (ER) stress.
View Article and Find Full Text PDF1. An increasing number of studies have indicated the roles of CYP4 proteins in drug metabolism; however, CYP4 expression has not been measured in cynomolgus monkeys, an important animal species for drug metabolism studies. 2.
View Article and Find Full Text PDF25-Hydroxyvitamin D3 (25OHD3) is used as a clinical biomarker for assessment of vitamin D status. Blood levels of 25OHD3 represent a balance between its formation rate and clearance by several oxidative and conjugative processes. In the present study, the identity of human uridine 5'-diphosphoglucuronyltransferases (UGTs) capable of catalyzing the 25OHD3 glucuronidation reaction was investigated.
View Article and Find Full Text PDFThe expression of small intestinal cytochromes P450 (P450s) has not been systematically measured in cynomolgus monkeys, which are widely used in preclinical drug studies to predict pharmacokinetics and toxicity in humans: therefore, P450 content of small intestine was quantified in 35 cynomolgus monkeys by immunoblotting using 11 selective antibodies. CYP2D, CYP2J2, CYP3A4 and CYP3A5 were detected in all 35 animals, while CYP1A and CYP2C9/19 were detected in 31 and 17 animals, respectively. CYP2C9 and CYP2C19 were detected with the same antibody.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
October 2012
Although blonanserin, a novel atypical antipsychotic agent with dopamine D(2)/serotonin 5-HT(2A) antagonistic properties, displays good brain distribution, the mechanism of this distribution has not been clarified. P-glycoprotein [(P-gp) or multidrug resistance protein 1 (MDR1)] is an efflux transporter expressed in the brain and plays an important role in limiting drug entry into the central nervous system (CNS). In particular, P-gp can affect the pharmacokinetics and efficacy of antipsychotics, and exacerbate or soothe their adverse effects.
View Article and Find Full Text PDFVitamin D(3) is critical for the regulation of calcium and phosphate homeostasis. In some individuals, mineral homeostasis can be disrupted by long-term therapy with certain antiepileptic drugs and the antimicrobial agent rifampin, resulting in drug-induced osteomalacia, which is attributed to vitamin D deficiency. We now report a novel CYP3A4-dependent pathway, the 4-hydroxylation of 25-hydroxyvitamin D(3) (25OHD(3)), the induction of which may contribute to drug-induced vitamin D deficiency.
View Article and Find Full Text PDFThe double null mutation of glutathione transferase, GSTM1 and GSTT1, is reported to influence troglitazone-associated abnormal increases of alanine aminotransferase and aspartate aminotransferase. However, no nonclinical data with a bearing on the clinical outcomes and underlying mechanisms have hitherto been reported. To investigate whether deficiency in GSTM1 and/or GSTT1 is related to troglitazone hepatotoxicity in vitro, the covalent binding level (CBL) (an index of reactive metabolite formation) and cytotoxicity of troglitazone and rosiglitazone, another thiazolidinedione but with low hepatotoxicity, were examined using human liver samples phenotyped for cytochrome P450s and genotyped for GSTM1 and GSTT1.
View Article and Find Full Text PDFPrediction of idiosyncratic drug-induced liver injury (DILI) is difficult, and the underlying mechanisms are not fully understood. However, many drugs causing DILI are considered to form reactive metabolites and covalently bind to cellular macromolecules in the liver. The objective of this study was to clarify whether the risk of idiosyncratic DILI can be estimated by comparing in vitro covalent binding (CB) levels among 12 positive compounds (acetaminophen, alpidem, bromfenac, carbamazepine, diclofenac, flutamide, imipramine, nefazodone, tacrine, ticlopidine, tienilic acid, and troglitazone) for DILI and 12 negative compounds (acetylsalicylic acid, caffeine, dexamethasone, losartan, ibuprofen, paroxetine, pioglitazone, rosiglitazone, sertraline, theophylline, venlafaxine, and zolpidem).
View Article and Find Full Text PDFCytochrome P450 3A4 is the predominant isoform in liver, and it metabolizes more than 50% of the clinical drugs commonly used. However, CYP3A4 is also responsible for metabolic activation of drugs, leading to liver injury. Benzodiazepines are widely used as hypnotics and sedatives for anxiety, but some of them induce liver injury in humans.
View Article and Find Full Text PDFBeagle dogs are commonly used for toxicological and pharmacological studies of drug candidates in the pharmaceutical industry. Recently, we reported a CYP1A2-deficient dog with a nonsense mutation (C1117T). In this study, using CYP1A2-deficient and wild-type dog liver microsomes, substrate specificity of dog CYP1A2 was investigated and compared with human CYP1A2.
View Article and Find Full Text PDFThe biological effects of 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) are terminated primarily by P450-dependent hydroxylation reactions. However, the hormone is also conjugated in the liver and a metabolite, presumably a glucuronide, undergoes enterohepatic cycling. In this study, the identity of human enzymes capable of catalyzing the 1,25(OH)2D3 glucuronidation reaction was investigated in order to better understand environmental and endogenous factors affecting the disposition and biological effects of vitamin D3.
View Article and Find Full Text PDFMetabolites of arachidonic acid produced by P450 are interesting substances with prominent physiological functions. To elucidate the physiological function of P450, it is necessary to identify a specific P450 in a particular tissue or organ and to characterize its catalytic activities. In this study, the expression of CYP2A1, 2B1, 2C23, 2J3, and 4F1 was investigated in liver, lung, kidney, spleen, heart, brain, and testis of rats by RT-PCR.
View Article and Find Full Text PDFThe decline in bone mineral density that occurs after long-term treatment with some antiepileptic drugs is thought to be mediated by increased vitamin D(3) metabolism. In this study, we show that the inducible enzyme CYP3A4 is a major source of oxidative metabolism of 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] in human liver and small intestine and could contribute to this adverse effect. Heterologously-expressed CYP3A4 catalyzed the 23- and 24-hydroxylation of 1,25(OH)(2)D(3).
View Article and Find Full Text PDFAs a part of the studies conducted by the Pharma SNPs Consortium (PSC), the enzyme activities of CYP1A2, CYP2A6 and CYP2B6 variants with altered amino acids as a result of single nucleotide polymorphisms (SNPs) found among the Japanese population were analyzed under a unified protocol using the same lots of reagents by the laboratories participating in the PSC. Mutations in CYP1A2, CYP2A6 and CYP2B6 were introduced by site-directed mutagenesis and the wild type and mutated CYP molecules were expressed in Escherichia coli. The expressed cytochrome P450s were purified and the enzyme activities were measured in reconstitution systems.
View Article and Find Full Text PDFObjectives: Recently, we reported that AC-3933, a novel cognitive enhancer, is polymorphically hydroxylated in beagle dogs and that dogs could be phenotyped as extensive metabolizers (EM) or poor metabolizers (PM). AC-3933 polymorphic hydroxylation is caused by polymorphic expression of CYP1A2 protein in dog liver.
Methods: In order to clarify the mechanism of polymorphic expression of CYP1A2 protein in beagle dogs, we investigated, in this study, the sequence of CYP1A2 cDNA in EM and PM dogs.
5-(3-methoxyphenyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)-2-oxo-1,2-dihydro-1,6-naphthyridine (AC-3933) is a novel cognitive enhancer with central benzodiazepine receptor partial inverse agonistic activity. AC-3933 is predominantly metabolized to hydroxylated metabolite [SX-5745; 3-(5-hydroxymethyl-1,2,4-oxadiazol-3-yl)-5-(3-methoxyphenyl)-2-oxo-1,2-dihydro-1,6-naphthyridine] in dog. Initially, we found that there is considerable interindividual variability in AC-3933 hydroxylation in dogs and that dogs could be phenotyped as extensive metabolizer (EM) and poor metabolizer (PM).
View Article and Find Full Text PDFThe purpose of the study was to elucidate human intestinal cytochrome P450 isoform(s) involved in the metabolism of an antihistamine, ebastine, having two major pathways of hydroxylation and N-dealkylation. The ebastine dealkylase in human intestinal microsomes was CYP3A4, based on the inhibition studies with antibodies against CYP1A, CYP2A, CYP2C, CYP2D, CYP2E, and CYP3A isoforms and their selective inhibitors. However, ebastine hydroxylase could not be identified.
View Article and Find Full Text PDF