Publications by authors named "Takanari Shigemitsu"

The aberrant upregulation of protein arginine deiminase 2- (PAD2-) catalyzed citrullination is reported in various autoimmune diseases (rheumatoid arthritis and multiple sclerosis) and several cancers. Currently, there are no anti-PAD2 monoclonal antibodies (mAbs) that can inhibit the citrullination reaction. Here, an epitope YLNRGDRWIQDEIEFGY was examined as an antigenic site of PAD2.

View Article and Find Full Text PDF

Rice prolamin species form a layered structure in the protein body type I (PB-I) storage organelle. Rice prolamins are classified as 10 kDa, 13a-1, 13a-2, 13b-1, 13b-2 and 16 kDa prolamin. Prolamin species form layer structure in PB-I in order of 10 kDa core, 13b-1 layer, 13a (13a-1 and 13a-2) and 16 kDa middle layer and 13b-2 outer-most layer.

View Article and Find Full Text PDF

Heat stress occurrence during seed filling leads to the formation of a chalky portion in the limited zone of the starchy endosperm of rice grains. In this study, isolation of aleurone, dorsal, central and lateral tissues of developing endosperm by laser-microdissection (LM) coupled with gene expression analysis of a 44 K microarray was performed to identify key regulatory genes involved in the formation of milky-white (MW) and white-back (WB) grains during heat stress. Gene regulatory network analysis classified the genes changed under heat stress into five modules.

View Article and Find Full Text PDF

Rice prolamins are accumulated in endoplasmic reticulum (ER)-derived proteins bodies, although conserved sequences retained in ER are not confirmed. We investigated portion sequences of prolamins that must accumulate in PB-Is. Rice seed prolamins are accumulated in endoplasmic reticulum (ER)-derived protein body type I (PB-I), but ER retention sequences in rice prolamin polypeptides have not been confirmed.

View Article and Find Full Text PDF
Article Synopsis
  • Prolamin-GFP fusion proteins were targeted to specific layers within protein bodies (PB-Is) in rice seed endosperm, showing potential for use in oral vaccines.
  • The layered structure of PB-Is provides resistance to digestive juices, allowing for the possibility of protecting vaccine antigens during digestion.
  • Experiments indicated that these fusion proteins were progressively digested from the outer layers by pepsin, suggesting that the configuration of PB-Is could help deliver intact vaccine components to the small intestine.
View Article and Find Full Text PDF

Cereal prolamins, which are alcohol-soluble seed storage proteins, can induce ER-derived protein bodies (PBs) in heterologous tissue. Like maize and wheat prolamins, rice prolamins can form ER-derived PBs, but the region of mature polypeptides that is essential for PB formation has not been identified. In this study, we examined the formation mechanisms of ER-derived PB-like structures by expressing rice 13 kDa prolamin-deletion mutants fused to green fluorescent protein (GFP) in heterologous tissues such as yeast.

View Article and Find Full Text PDF

KEY MESSAGE : We showed that rice prolamin polypeptides formed ER-derived PBs in transgenic rice calli, and that this heterologous transgene expression system is suitable for studying the mechanism of rice PB-I formation. Rice prolamins, alcohol-soluble seed storage proteins, accumulate directly within the rough endoplasmic reticulum (ER) lumen, leading to the formation of ER-derived type I protein bodies (PB-Is) in rice seed. Because rice prolamins do not possess a well-known ER retention signal such as K(H)DEL, or a unique sequence for retention in the ER such as a tandem repeat domain of maize and wheat prolamins, the mechanisms of prolamin accumulation in the ER and PB-I formation are poorly understood.

View Article and Find Full Text PDF

There are difficulties in detecting and separating rice prolamin polypeptides by 2D-PAGE analysis because prolamin polypeptides are insoluble, and the amino acid sequences show high homology among them. In this study, we improved the prolamin extraction method and the 2D-PAGE procedure, and succeeded in separating prolamin polypeptide species by 2D-PAGE and in identifying major prolamin polypeptide sequences.

View Article and Find Full Text PDF

Rice prolamins, a group of seed storage proteins, are synthesized on the rough endoplasmic reticulum (ER) and form type I protein bodies (PB-Is) in endosperm cells. Rice prolamins are encoded by a multigene family. In this study, the spatial accumulation patterns of various prolamin species in rice endosperm cells were investigated to determine the mechanism of formation of the internal structure of PB-Is.

View Article and Find Full Text PDF

Rice seeds are potentially useful hosts for the production of pharmaceutical proteins. However, low yields of recombinant proteins have been observed in many cases because recombinant proteins compete with endogenous storage proteins. Therefore, we attempt to suppress endogenous seed storage proteins by RNA interference (RNAi) to develop rice seeds as a more efficient protein expression system.

View Article and Find Full Text PDF

The development of the protein body in the late stage of seed maturation is poorly understood, because electron-microscopy of mature cereal endosperm is technically difficult. In this study, we attempted to modify the existing method of embedding rice grain in resin. The modified method revealed the ultrastructures of the mature protein body in dry cereal grains.

View Article and Find Full Text PDF

There are technical difficulties in obtaining intact sections of cereal grains in which mature cells and their subcellular structures are well preserved. Here we describe a simple method for sectioning hard mature rice grains. It makes possible accurate localization of storage proteins in high-quality histological sections of rice endosperm.

View Article and Find Full Text PDF