Tin (Sn)-based perovskites are increasingly attractive because they offer lead-free alternatives in perovskite solar cells. However, depositing high-quality Sn-based perovskite films is still a challenge, particularly for low-temperature planar heterojunction (PHJ) devices. Here, a "multichannel interdiffusion" protocol is demonstrated by annealing stacked layers of aqueous solution deposited formamidinium iodide (FAI)/polymer layer followed with an evaporated SnI layer to create uniform FASnI films.
View Article and Find Full Text PDFTin-based halide perovskite materials have been successfully employed in lead-free perovskite solar cells, but the tendency of these materials to form leakage pathways from p-type defect states, mainly Sn and Sn vacancies, causes poor device reproducibility and limits the overall power conversion efficiencies (PCEs). Here, we present an effective process that involves a reducing vapor atmosphere during the preparation of Sn-based halide perovskite solar cells to solve this problem, using MASnI, CsSnI, and CsSnBr as the representative absorbers. This process enables the fabrication of remarkably improved solar cells with PCEs of 3.
View Article and Find Full Text PDFThe development of Sn-based perovskite solar cells has been challenging because devices often show short-circuit behavior due to poor morphologies and undesired electrical properties of the thin films. A low-temperature vapor-assisted solution process (LT-VASP) has been employed as a novel kinetically controlled gas-solid reaction film fabrication method to prepare lead-free CH3NH3SnI3 thin films. We show that the solid SnI2 substrate temperature is the key parameter in achieving perovskite films with high surface coverage and excellent uniformity.
View Article and Find Full Text PDFThe regioregular narrow band gap (E(g) ~1.5 eV) conjugated polymer PIPCP was designed and synthesized. PIPCP contains a backbone comprised of CPDT-PT-IDT-PT repeat units (CPDT = cyclopentadithiophene, PT = pyridyl[2,1,3]thiadiazole, IDT = indacenodithiophene) and strictly organized PT orientations, such that the pyridyl N-atoms point toward the CPDT fragment.
View Article and Find Full Text PDF