Publications by authors named "Takamichi Nakamoto"

Animals can easily detect hundreds of thousands of odors in the environment with high sensitivity and selectivity. With the progress of biological olfactory research, scientists have extracted multiple biomaterials and integrated them with different transducers thus generating numerous biosensors. Those biosensors inherit the sensing ability of living organisms and present excellent detection performance.

View Article and Find Full Text PDF

A cell expressing an olfactory receptor (OR) exhibits excellent odorant detection ability and thus is widely applied in odor biosensors. Most of those biosensors, however, could detect only liquid-phase nonchanging single-component odorants. In this paper, we raised up an odor biosensor for the active tracking of temporally changing gas-phase odor mixture by an array of cells expressing ORs.

View Article and Find Full Text PDF

Miniaturized sensors possess many advantages, such as rapid response, easy chip integration, a possible lower concentration of target compound detection, etc. However, a major issue reported is a low signal response. In this study, a catalyst, the atomic gold clusters of Au where n = 2, was decorated at a platinum/polyaniline (Pt/PANI) working electrode to enhance the sensitivity of butanol isomers gas measurement.

View Article and Find Full Text PDF

Most of the olfactory perception works focused on forward prediction of odor impression, for example, given an odorant's molecular structure parameters or the sensing data predict its odor impression. So far, mapping of mass spectrum of odorant molecules into the odor perception space (binary or continuous sensory space) has been successfully performed. However, it is difficult to predict odorant's sensing data associated with binary odor descriptors (e.

View Article and Find Full Text PDF

Recently, olfactory information on odorants has been associated with their corresponding molecular features. Such information has been obtained by predicting the sensory test evaluation scores from the molecular structure parameters or the sensing data. On the other hand, we develop a method of the prediction of molecular features corresponding to the odor impression.

View Article and Find Full Text PDF

Predicting odor impression is considered an important step towards measuring the quality of scent in the food, perfume, and cosmetic industries. In odor impression identification and classification, the main target is to predict scent impression while identifying non-target odor impressions are less significant. However, the effectiveness of predictive models depends on the quality of data distribution.

View Article and Find Full Text PDF

In recent few years, researchers utilized cell expressing olfactory receptor for vapor detection under various sensing mechanisms. Those olfactory systems, however, have relatively short lifetime due to the dry out of aqueous solution covering the cell. In this paper, we came up with a feedback control structure composed of an impedance measurement circuit, a microcontroller and two syringe pumps for maintaining thin liquid layer above cell.

View Article and Find Full Text PDF

Organisms perceive odorants in the environment through the use of a large number of olfactory receptors. Various odor biosensors have been researched and developed in order to mimic this olfactory mechanism. This study examines the quantification of odorant concentrations through the use of a sensor array comprised of several types of cell-based odor sensors expressing insect olfactory receptors with nonlinear characteristics.

View Article and Find Full Text PDF

Twenty-eight quartz crystal microbalance (QCM) sensors coated with different sensing films were tested and analyzed in this work; twenty-three sensors were coated in different room temperature ionic liquids (RTILs) and five additional QCM sensors were coated with conventional films commonly used as stationary phases in gas chromatography. Four volatile organic compounds (VOCs), in gaseous phase-hexanol, butyl acetate, 2-hexanone, and hexanoic acid-were measured. Two transducer mechanisms were used; resonant frequency shift and resistance shift of a QCM Mason equivalent circuit.

View Article and Find Full Text PDF

Novel sensing materials have been formed by decorating polyaniline conducting polymers with atomic gold clusters where the number of atoms is precisely defined. Such materials exhibit unique electrocatalytic properties of electrooxidation to aliphatic alcohols, although analytes with other functional groups have not been studied. This paper reports a study of cyclic voltammetric patterns obtained with bi-atomic gold nanocomposite response to analytes with other functional groups for sensor applications.

View Article and Find Full Text PDF

There have been recent advances in predicting odor characteristics using molecular structure parameters of chemicals. Although the molecular structure parameters are available for each chemical, they cannot be used for chemical mixtures. This study will elucidate a computational method of predicting human odor perception from the mass spectra of chemical mixtures such as essential oils.

View Article and Find Full Text PDF

This paper reports on-line mixture quantification with FAIMS. Ternary gas mixtures composed of acetone, ethanol, and diethyl ether were used for quantification. We succeeded in an on-line quantification of ppm-level concentration and even sub-ppm-level gases using the gradient descent method.

View Article and Find Full Text PDF

An artificial olfactory system coupled with an odor generation system is herein reported. The artificial olfactory system is composed of four chemical sensors consisting of quartz crystal microbalances (QCMs) coated with room temperature ionic liquids (RTILs). The sensors are interrogated by four vector network analyzers, which are used to measure the series resonant frequency and motional resistance.

View Article and Find Full Text PDF

Machine learning techniques are useful for applications such as electronic nose (e-nose) systems to classify or identify the target odor. In recent years, deep learning is regarded as one of the most powerful machine learning methods. It enables researchers to extract useful features automatically from high-dimensional raw data and has been widely applied to computer vision, speech recognition, and natural language processing, though little has been reported in the field of olfaction.

View Article and Find Full Text PDF

Gas mixture quantification is essential for the recording and reproducing odors, because an odor consists of multiple chemical compounds. Gas mixture quantification using field asymmetric ion mobility spectrometry (FAIMS) was studied. Acetone, ethanol, and diethyl ether were selected as components of a ternary gas mixture sample as representatives of the ketone, alcohol, and ether chemical classes, respectively.

View Article and Find Full Text PDF

Since olfaction is an important sense in human interfaces, we have developed an olfactory display using a surface acoustic wave (SAW) atomizer and micro-dispensers. In this olfactory display, the efficiency of atomization is important in order to avoid smell persistence problems often encountered in human olfactory interfaces. Thus, the SAW device is coated with amorphous Teflon film to change the substrate nature from hydrophilic to hydrophobic.

View Article and Find Full Text PDF

Recent studies on machine learning technology have reported successful performances in some visual and auditory recognition tasks, while little has been reported in the field of olfaction. In this paper we report computational methods to predict the odor impression of a chemical from its physicochemical properties. Our predictive model utilizes nonlinear dimensionality reduction on mass spectra data and performs the clustering of descriptors by natural language processing.

View Article and Find Full Text PDF

The sense of smell arises from the perception of odors from chemicals. However, the relationship between the impression of odor and the numerous physicochemical parameters has yet to be understood owing to its complexity. As such, there is no established general method for predicting the impression of odor of a chemical only from its physicochemical properties.

View Article and Find Full Text PDF

In this review, an odor sensing system and an olfactory display are introduced into people in pharmacy. An odor sensing system consists of an array of sensors with partially overlapping specificities and pattern recognition technique. One of examples of odor sensing systems is a halitosis sensor which quantifies the mixture composition of three volatile sulfide compounds.

View Article and Find Full Text PDF