Surfaces with biological functionalities are of great interest for biomaterials, tissue engineering, biophysics, and for controlling biological processes. The layer-by-layer (LbL) assembly is a highly versatile methodology introduced 30 years ago, which consists of assembling complementary polyelectrolytes or biomolecules in a stepwise manner to form thin self-assembled films. In view of its simplicity, compatibility with biological molecules, and adaptability to any kind of supporting material carrier, this technology has undergone major developments over the past decades.
View Article and Find Full Text PDFTissue Eng Part C Methods
March 2023
The respiratory tract is one of the frontline barriers for biological defense. Lung epithelial intercellular adhesions provide protection from bacterial and viral infections and prevent invasion into deep tissues by pathogens. Dysfunction of lung epithelial intercellular adhesion caused by pathogens is associated with development of several diseases, such as acute respiratory distress syndrome, pneumonia, and asthma.
View Article and Find Full Text PDFThe aim of this study is to validate an in vitro skin irritation test (SIT) using three-dimensional reconstructed human epidermal (RhE) skin equivalents prepared by layer-by-layer (LbL) method (LbL-3D Skin) in a series of interlaboratory studies. The goal of these validation studies is to evaluate the ability of this in vitro test to reliably discriminate skin irritant from nonirritant chemicals, as defined by OECD and UN GHS. This me-too validation study is to assess the within- and between-laboratory reproducibility, as well as the predictive capacity, of the LbL-3D Skin SIT in accordance with performance standards for OECD TG 439.
View Article and Find Full Text PDFThree-dimensional (3D) cultured skin containing vascular networks is a useful skin substitute that enables rapid reperfusion after transplantation. During its cultivation, however, insufficient nutrient delivery to the thick cultured tissue from the surrounding culture medium decreases the tissue viability. To solve this problem, in this study, we applied photobiomodulation (PBM), which can optically activate the electron transport chain of mitochondria, to human 3D skin cultures constructed using the layer-by-layer cell coating technique.
View Article and Find Full Text PDFBackground: Islet transplantation is an effective replacement therapy for type 1 diabetes (T1D) patients. However, shortage of donor organ for allograft is obstacle for further development of the treatment. Subcutaneous transplantation with stem cell-derived β-cells might overcome this, but poor vascularity in the site is burden for success in the transplantation.
View Article and Find Full Text PDFGelation in the presence of cells with minimum cytotoxicity is highly desirable for materials with applications in tissue engineering. Herein, the naturally occurring polysaccharide pullulan is functionalized with thiolactones that undergo ring-opening addition of amines. As a result, the modified pullulan can be cross-linked with diamines and/or amine-containing biological substrates enhancing the system's versatility (e.
View Article and Find Full Text PDFHuman skin equivalents (HSEs) consisting of an epidermis and dermis have been used as promising tools for drug evaluation and for clinical applications in regenerative medicine. Normal human dermal fibroblasts (NHDFs) are essential for the fabrication of HSEs because they play an important role in the maturation of the epidermis. Recently, epidermal tight junctions (TJs), which are complex cell-cell junctions, have attracted much attention as a second barrier and regulator for other barrier functions.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a severe health problem characterized by progressive fibroblast proliferation and aberrant vascular remodeling. However, the lack of a suitable model that replicates cell-specific changes in IPF tissue is a crucial issue. Three-dimensional (3D) cell cultures allow the mimicking of cell-specific functions, facilitating development of novel antifibrosis drugs.
View Article and Find Full Text PDFTissue-engineered skin equivalents are reconstructed the functions of human skin and can be used as an alternative to animal experiments in basic study or as cultured skin for regenerative medicine. Recent studies confirmed that epidermal tight junctions (TJs), which are complex intercellular junctions formed in the stratum granulosum of human skin, play an important part in the formation of the skin barrier function. In well-formed reconstructed human skin models, there are several reports on the expression of TJ proteins and their localization in epidermal layer, however, the morphological features of TJ, showing tight junctional contacts and the process of TJ formation have yet to be investigated.
View Article and Find Full Text PDFIn this study, three-dimensional (3D) cardiac tissue constructed using the pin type bioprinter 'microscopic painting device' and layer-by-layer cell coating technique was confirmed to have drug responsiveness by three different analytical methods for cardiotoxicity assay. Recently, increasing attention has been focused on biofabrication to create biomimetic 3D tissue. Although various tissues can be produced in vitro, there are many issues surrounding the stability and reproducibility of the preparation of 3D tissues.
View Article and Find Full Text PDFThe fabrication of artificial cardiac tissue is an active area of research due to the shortage of donors for heart transplantation and for drug development. In our previous study, we fabricated vascularized three-dimensional (3D) cardiac tissue by layer-by-layer (LbL) and cell accumulation technique. However, it was not able to develop sufficient function because it was cultured on a hard plastic substrate.
View Article and Find Full Text PDFHerein, we report the fabrication of native organ-like three-dimensional (3D) cardiac tissue with an oriented structure and vascular network using a layer-by-layer (LbL), cell accumulation and 3D printing technique for regenerative medicine and pharmaceutical applications. We firstly evaluated the 3D shaping ability of hydroxybutyl chitosan (HBC), a thermoresponsive polymer, by using a robotic dispensing 3D printer. Next, we tried to fabricate orientation-controlled 3D cardiac tissue using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and normal human cardiac fibroblasts (NHCF) coated with extracellular matrix (ECM) nanofilms by layer-by-layer technique.
View Article and Find Full Text PDFHuman induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a new source of cardiac cells are expected to find use as tools in high-throughput screening for drug candidates and cardiotoxicity validation without the need for experimentation on animals. In recent years, it has been reported that drug screening using three-dimensional (3D) tissue is better than conventional 2D culture. Various methods have been developed for mass culture of hiPSC-CMs, and embryoid body (EB) formation is necessary in the majority of differentiation methods as this is reported to promote the differentiation of hiPSCs.
View Article and Find Full Text PDFWe conducted a stability study of biodegradable and amphiphilic nanoparticles (NPs) consisting of phenylalanine-attached poly(γ-glutamic acid) for drug delivery to find the optimal formulation and define the optimal storage conditions using novel quantitative analytical methods. The stability of NP suspension and lyophilized NP powder manufactured by a dimethyl sulfoxide-based and an ethanol-based process was assessed under 5°C, 25°C/60% relative humidity and 40°C/75% relative humidity. The content of phenylalanine-attached poly(γ-glutamic acid), impurities, absolute molecular weight, appearance, clarity of solution, particle size, zeta potential, particle matter, osmolality, water content, and pH were evaluated as parameters of NP stability.
View Article and Find Full Text PDFThree-dimensional (3D) printers are attracting attention as a method for arranging and building cells in three dimensions. Bioprinting technology has potential in tissue engineering for the fabrication of scaffolds, cells, and tissues. However, these various printing technologies have limitations with respect to print resolution and due to the characteristics of bioink such as viscosity.
View Article and Find Full Text PDFIn this report, we propose a micro vacuum chuck (MVC) which can connect three-dimensional (3D) tissues to a tensile test system by vacuum pressure. Because the MVC fixes the 3D tissue by vacuum pressure generated on multiple vacuum holes, it is expected that the MVC can fix 3D tissue to the system easily and mitigate the damage which can happen by handling during fixing. In order to decide optimum conditions for the size of the vacuum holes and the vacuum pressure, various sized vacuum holes and vacuum pressures were applied to a normal human cardiac fibroblast 3D tissue.
View Article and Find Full Text PDFAutologous split-thickness skin grafts are the preferred treatment for excised burn wounds, but donor sites for autografting are often limited in patients with extensive burns. A number of alternative treatments are already in use to treat large burns and ulcers. Despite intense efforts to develop tissue-engineered skin, delayed or absent vascularization is one of the major reasons for tissue-engineered skin engraftment failure.
View Article and Find Full Text PDFTissue Eng Part C Methods
May 2019
There have been many advances in tissue engineering with respect to and models of oral mucosa equivalents (OMEs). To apply reconstructed oral mucosa models to regenerative medicine and alternatives to animal testing, it is necessary to develop the technology of reconstructing different types of oral tissues, such as control of epithelial differentiation and introduction of appendages. We previously reported that functional three-dimensional (3D) tissue models could be quickly constructed by using a layer-by-layer (LbL) cell coating technique that assembles extracellular matrix (ECM) nanofilms to a cell surface.
View Article and Find Full Text PDFA quantitative method of analyzing nanoparticles (NPs) for drug delivery is urgently required by researchers and industry. Therefore, we developed new quantitative analytical methods for biodegradable and amphiphilic NPs consisting of polymeric γ-PGA-Phe [phenylalanine attached to poly(γ-glutamic acid)] molecules. These γ-PGA-Phe NPs were completely dissociated into separate γ-PGA-Phe molecules by adding sodium dodecyl sulfate (SDS).
View Article and Find Full Text PDFTissue engineering of insulin-secreting cells using alternatives to islet transplantation has been fueled by the development of available materials and fabrication techniques. We have established a cell coating technique that enables the cell surface to be coated with extracellular matrix based on the concept of a layer-by-layer (LbL) assembly. The present study evaluated whether this technique is beneficial for fabricating pancreatic β-cell spheroids using a mouse β-cell line.
View Article and Find Full Text PDFAmphiphilic graft copolymer consisting of poly(γ-glutamic acid) (γ-PGA) as the hydrophilic backbone and L-phenylalanine ethyl ester (Phe) as the hydrophobic side chain is an important biodegradable polymer with great potential in medical applications. In this research, we established analytical methods for the characterization and quality control of γ-PGA-graft-Phe (γ-PGA-Phe), which forms nanoparticles in aqueous solution, as a deployment platform in practical applications for vaccine adjuvants. The SEC-RI/MALS system, which uses size exclusion chromatography (SEC) coupled with a multi_angle light scattering (MALS) detector and refractive index (RI) detector, was developed to evaluate the characteristics of various types of polymers.
View Article and Find Full Text PDFSome neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease.
View Article and Find Full Text PDFHerein, we report the fabrication of orientation-controlled tissues similar to heart and nerve tissues using a cell accumulation and three-dimensional (3D) printing technique. We first evaluated the 3D shaping ability of hydroxybutyl chitosan (HBC), a thermoresponsive polymer, by using a robotic dispensing 3D printer. HBC polymer could be laminated to a height of 1124 ± 14 μm.
View Article and Find Full Text PDFThe creation of artificial liver tissue is an active area of research due to the shortage of donors for liver transplantation. Here we investigated whether a simple and efficient cell coating technique developed in our laboratory could be used to generate functional vascularized liver tissue. This technique creates three-dimensional tissue by loading cells sterically onto other cells that have been coated with layer-by-layer (LbL) nanofilms of fibronectin and gelatin, two extracellular matrix proteins.
View Article and Find Full Text PDF