Publications by authors named "Takamasa Fukunaga"

N-linked oligosaccharides in the fission yeast Schizosaccharomyces pombe contain large amounts of d-galactose (Gal), which mainly comprises α1,2- and α1,3-linked Gal except for pyruvylated β1,3-linked Gal (PvGalβ) at the non-reducing end. The PvGalβ unit of N-glycans is important for regulating nonsexual flocculation and invasive growth, but the mechanistic basis for β-galactosylation in fission yeast is poorly understood. To gain insight into this mechanism, we have characterized three genes previously identified to be involved in PvGalβ biosynthesis (pvg2, pvg3, and pvg5), with a focus on pvg3, which is predicted to contain a domain conserved in galactosyltransferase family 31 (GT31) proteins.

View Article and Find Full Text PDF

Schizosaccharomyces japonicus is a dimorphic yeast, transiting between unicellular and hyphal growth. The glycoproteins of fission yeast contain, in addition to mannose (Man), a large number of galactose (Gal) residues. Previously, we reported that the cell-surface O-glycans of S.

View Article and Find Full Text PDF

Both pyruvylation and sialylation onto the terminus of oligosaccharides of N-glycoproteins seem to be structurally and functionally similar with a property of conferring negative charge. However, detailed molecular characteristics of pyruvylation and sialylation in vivo were elusive. Here, to investigate an effect of terminal pyruvylation to N-glycan on in vivo biodistribution and kinetics, we prepared human serum albumin (HSA) modified with pyruvylated N-glycan (PvG), conjugated with HiLyte Fluor 750 (FL750-PvGHSA).

View Article and Find Full Text PDF

The glycoproteins of yeast contain a large outer chain on N-linked oligosaccharides; therefore, yeast is not suitable for producing therapeutic glycoproteins for human use. Using a deletion mutant strain of α1,6-mannosyltransferase (och1Δ), we previously produced humanized N-glycans in fission yeast; however, the Schizosaccharomyces pombe och1Δ cells displayed a growth delay even during vegetative growth, resulting in reduced productivity of heterologous proteins. To overcome this problem, here we performed a genome-wide screen for genes that would suppress the growth defect of temperature-sensitive och1Δ cells.

View Article and Find Full Text PDF

In the fission yeast Schizosaccharomyces pombe, α1,2- and α1,3-linked D-galactose (Gal) residues are transferred to N- and O-linked oligosaccharides of glycoproteins by galactosyltransferases. Although the galactomannans are important for cell-cell communication in S. pombe (e.

View Article and Find Full Text PDF

The gmn2 mutant of Schizosaccharomyces pombe has previously been shown to exhibit defects in protein glycosylation of N-linked oligosaccharides (Ballou, L. and Ballou, CE., Proc.

View Article and Find Full Text PDF

The majority of Golgi glycosyltransferases are type II membrane proteins with a small cytosolic tail at their N-terminus. Several mechanisms for localizing these glycosyltransferases to the Golgi have been proposed. In Saccharomyces cerevisiae, the phosphatidylinositol-4-phosphate-binding protein ScVps74p interacts with the cytosolic tail of a Golgi glycosyltransferase and contributes to its localization.

View Article and Find Full Text PDF

The N- and O-linked oligosaccharides from fission yeast Schizosaccharomyces pombe not only contain large amounts of d-mannose (Man) but also contain large amounts of d-galactose (Gal). Although the galactomannans of S. pombe are mainly composed of α1,2- or α1,3-linked Gals, some of the terminal α1,2-linked Gals are found to be linked to pyruvylated β1,3-linked galactose (PvGal).

View Article and Find Full Text PDF