Publications by authors named "Takako Yao"

Oxidative stress is implicated in the pathogenesis of various acute disorders including ischemia/reperfusion injury, ultraviolet/radiation burn, as well as chronic disorders such as dyslipidemia, atherosclerosis, diabetes mellitus, chronic renal disease, and inflammatory bowel disease (IBD). However, the precise mechanism involved remains to be clarified. We formerly identified a novel apoptosis-inducing humoral protein, in a hypoxia/reoxygenation-conditioned medium of cardiac myocytes, which proved to be 69th tyrosine-sulfated eukaryotic translation initiation factor 5A (eIF5A).

View Article and Find Full Text PDF

Background: Oxidative stress is implicated in the pathogenesis of doxorubicin-induced apoptosis in cardiac myocytes. However, the precise mechanism remains uncertain. We identified an apoptosis-inducing humoral factor, in a conditioned medium from cardiac myocytes subjected to hypoxia/reoxygenation, to be 69th tyrosine-sulfated eukaryotic translation initiation factor 5A (eIF5A).

View Article and Find Full Text PDF

Oxidative stress, an inducer of apoptosis, plays a critical role in ischemia/reperfusion injury and atherosclerosis. We previously identified an apoptosis-inducing ligand, the post-translationally modified secreted form of eukaryotic translation initiation factor 5A (eIF5A), 'oxidative stress-responsive apoptosis-inducing protein' (ORAIP). In this study, we investigated the role of ORAIP in patients with heterozygous familial hypercholesterolemia (HeFH), a leading cause of premature cardiovascular disease.

View Article and Find Full Text PDF

Oxidative stress is known to play a critical role in the pathogenesis of various disorders, especially in ischemia/reperfusion (I/R) injury. We identified an apoptosis-inducing humoral factor and named this novel post translationally modified secreted form of eukaryotic translation initiation factor 5A (eIF5A) "oxidative stress-responsive apoptosis inducing protein" (ORAIP). The purpose of this study was to investigate the role of ORAIP in the mechanisms of cerebral I/R injury.

View Article and Find Full Text PDF

Purpose: Oxidative stress has been implicated in the pathogenesis of various disorders, including diabetic retinopathy (DR). Oxidative stress-responsive apoptosis-inducing protein (ORAIP; a tyrosine-sulfated secreted form of eukaryotic translation initiation factor 5A [eIF5A]) is a recently discovered pro-apoptotic ligand that is secreted from cells in response to oxidative stress and induces apoptosis in an autocrine fashion. This study aimed to determine if ORAIP plays a role in DR.

View Article and Find Full Text PDF

We previously identified a novel apoptosis-inducing humoral factor in the conditioned medium of hypoxic/reoxygenated-cardiac myocytes. We named this novel post-translationally-modified secreted-form of eukaryotic translation initiation factor 5A Oxidative stress-Responsive Apoptosis-Inducing Protein (ORAIP). We confirmed that myocardial ischemia/reperfusion markedly increased plasma ORAIP levels and rat myocardial ischemia/reperfusion injury was clearly suppressed by neutralizing anti-ORAIP monoclonal antibodies (mAbs) in vivo.

View Article and Find Full Text PDF

Oxidative stress is known to play a pivotal role in the pathogenesis of various disorders including atherosclerosis, aging and especially ischaemia/reperfusion injury. It causes cell damage that leads to apoptosis. However, the precise mechanism has been uncertain.

View Article and Find Full Text PDF
Article Synopsis
  • - Oxidative stress is linked to serious health issues like ischemia/reperfusion injury, atherosclerosis, and aging, causing harm to cells which leads to apoptosis (cell death) through unknown mechanisms.
  • - Researchers discovered that a protein called eIF5A is released by cardiac myocytes (heart muscle cells) during episodes of hypoxia (low oxygen) and reoxygenation, promoting apoptosis; blocking this protein with antibodies reduced cell death in lab tests.
  • - Elevated levels of eIF5A in the bloodstream were found after myocardial ischemia/reperfusion events, suggesting it could serve as a novel biomarker and potential therapeutic target for treating injuries caused by oxidative stress.
View Article and Find Full Text PDF