We fabricated a transparent nonfibrillar collagen gel using gamma irradiation (5 kGy) and cultured rat mesenchymal stem cells (MSCs) on both the gamma-irradiated collagen gel and on unirradiated fibrillar collagen gel. Cells attached well and proliferated with high viability on the surface of both gels. The cells cultured on the gamma-irradiated nonfibrillar gel had a unique elongated shape and adhered to each other in culture.
View Article and Find Full Text PDFNeuronal migration is a critical feature to ensure proper location and wiring of neurons during cortical development. Postmitotic neurons migrate from the ventricular zone into the cortical plate to establish neuronal lamina in an "inside-out" gradient of maturation. Here, we report that the mitotic kinase Aurora-A is critical for the regulation of microtubule organization during neuronal migration via an Aurora-A-NDEL1 pathway in the mouse.
View Article and Find Full Text PDFHOS cell is a model strain of human osteoblasts derived from human osteosarcoma. We cultured the HOS cells on both the conventional collagen gel (neutral gel), and the gamma-crosslinked collagen gel without collagen fibrils (acidic gel). The shape of HOS cells on the neutral gel was similar to that on the culture dish.
View Article and Find Full Text PDFLissencephaly is a devastating neurological disorder caused by defective neuronal migration. The LIS1 (or PAFAH1B1) gene was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. In particular, LIS1 is essential for anterograde transport of cytoplasmic dynein as a part of the cytoplasmic dynein-LIS1-microtubule complex in a kinesin-1-dependent manner.
View Article and Find Full Text PDFLissencephaly is a devastating neurological disorder caused by defective neuronal migration. LIS1 (official symbol PAFAH1B1, for platelet-activating factor acetylhydrolase, isoform 1b, subunit 1) was identified as the gene mutated in individuals with lissencephaly, and it was found to regulate cytoplasmic dynein function and localization. Here we show that inhibition or knockdown of calpains protects LIS1 from proteolysis, resulting in the augmentation of LIS1 amounts in Lis1(+/-) mouse embryonic fibroblast cells and rescue of the aberrant distribution of cytoplasmic dynein, mitochondria and beta-COP-positive vesicles.
View Article and Find Full Text PDF