Nihon Arukoru Yakubutsu Igakkai Zasshi
February 2009
There are almost no studies on the in vivo distribution kinetics of free and bound ethanol, alcohol metabolites (acetaldehyde and acetate) or the related substance, methanol, during alcohol oxidation. Thus, an acute alcohol administration experiment (alcohol consumption experiment) was carried out using volunteers (five healthy adult males; 2 flushers, 3 non-flushers), and distribution kinetics were investigated in biological samples (blood and urine). The levels of alcohol metabolites and methanol were measured as free compounds in blood samples and bound and free compounds in urine samples.
View Article and Find Full Text PDFRenal unilateral ureteral obstruction (UUO) causes acute generation of alpha-dicarbonyl stress substances, such as glyoxal, 3-deoxyglucosone, and methylglyoxal, in the kidneys. These alpha-dicarbonyl compounds are prone to form advanced glycation end products (AGEs) via the nonenzymatic Maillard reaction. Using transgenic (Tg) mice overexpressing a kidney-specific short-chain oxidoreductase, alpha-dicarbonyl/L-xylulose reductase (DCXR), we measured generation of alpha-dicarbonyls following UUO by means of electrospray ionization/liquid chromatography/mass spectrometry in their kidney extracts.
View Article and Find Full Text PDFUnilateral ureteral obstruction (UUO) of kidneys causes acute generation of carbonyl stress. By electrospray ionization/liquid chromatography/mass spectrometry (ESI/LC/MS) we measured the content of methyl glyoxal, glyoxal, and 3-deoxyglucosone in mouse kidney extracts following UUO. UUO resulted in elevation of these dicarbonyls in the obstructed kidneys.
View Article and Find Full Text PDFCarbonyl compounds in the blood stream tend to accumulate in the kidney of diabetic or end stage renal failure subjects. Previously we isolated cDNA encoding dicarbonyl/L-xylulose reductase (DCXR) from a mouse kidney cDNA library. In the present study, transgenic (Tg) mice were generated to study the functional role of DCXR in the kidney.
View Article and Find Full Text PDF