Emerging SARS-CoV-2 Omicron variants are highly contagious with enhanced immune escape mechanisms against the initially approved COVID-19 vaccines. Therefore, we require stable alternative-platform vaccines that confer protection against newer variants of SARS-CoV-2. We designed an Omicron B.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global pandemic. New technologies have been utilized to develop several types of vaccines to prevent the spread of SARS-CoV-2 infection, including mRNA vaccines. Our group previously developed an effective DNA-based vaccine.
View Article and Find Full Text PDFWe conducted a nonrandomized, open-label phase I study to assess the safety and immunogenicity of an intradermal coronavirus disease 2019 (COVID-19) DNA vaccine (AG0302-COVID-19) administered using a pyro-drive jet injector at Osaka University Hospital between Yanagida November 2020 and December 2021. Twenty healthy volunteers, male or female, were enrolled in the low-dose (0.2 mg) or high-dose (0.
View Article and Find Full Text PDFTo fight against the worldwide COVID-19 pandemic, the development of an effective and safe vaccine against SARS-CoV-2 is required. As potential pandemic vaccines, DNA/RNA vaccines, viral vector vaccines and protein-based vaccines have been rapidly developed to prevent pandemic spread worldwide. In this study, we designed plasmid DNA vaccine targeting the SARS-CoV-2 Spike glycoprotein (S protein) as pandemic vaccine, and the humoral, cellular, and functional immune responses were characterized to support proceeding to initial human clinical trials.
View Article and Find Full Text PDF