The bone is continuously renewed throughout adult life by the coordinated action of osteoclastic bone resorption and osteoblastic bone formation in response to various hormones, cytokines, chemokines and biomechanical external stimuli. This process, called bone remodeling, is a prerequisite for the normal bone homeostasis that maintains both bone quality and strength. An imbalance of bone resorption and bone formation is often central to metabolic bone diseases.
View Article and Find Full Text PDFDuring yeast sporulation, a forespore membrane (FSM) initiates at each spindle-pole body and extends to form the spore envelope. We used Schizosaccharomyces pombe to investigate the role of septins during this process. During the prior conjugation of haploid cells, the four vegetatively expressed septins (Spn1, Spn2, Spn3, and Spn4) coassemble at the fusion site and are necessary for its normal morphogenesis.
View Article and Find Full Text PDFTRAF6 is essential for osteoclastogenesis and for both RANK- and CD40-mediated activation of IKK and MAPKs. RANK, but not CD40, can promote osteoclastogenesis because only RANK induces NFATc1 activation through PLCgamma2-induced Ca(2+) oscillations together with the co-stimulatory signals emanating from immune receptors linked to ITAM-containing adaptors. These previous data suggest that RANK harbors a unique domain that functions in concert with the TRAF6-binding site in osteoclastogenesis.
View Article and Find Full Text PDFBone metabolism results from a balance between osteoclast-driven bone resorption and osteoblast-mediated bone formation. Diseases such as periodontitis and rheumatoid arthritis are characterized by increased bone destruction due to enhanced osteoclastogenesis. Here we report that interferon regulatory factor-8 (IRF-8), a transcription factor expressed in immune cells, is a key regulatory molecule for osteoclastogenesis.
View Article and Find Full Text PDFOsteoclasts, multinucleated cells of myeloid-monocytic origin, are responsible for bone resorption, which is crucial for maintenance of bone homeostasis in concert with bone-forming osteoblasts of nonhematopoietic, mesenchymal origin. Receptor activator of NF-kappaB ligand (RANKL) and M-CSF, expressed on the surface of and secreted by osteoblasts, respectively, are essential factors that facilitate osteoclast formation. In contrast to the activation processes for osteoclast formation, inhibitory mechanisms for it are poorly understood.
View Article and Find Full Text PDFCertain autoimmune diseases result in abnormal bone homeostasis, but association of immunodeficiency with bone is poorly understood. Osteoclasts, which derive from bone marrow cells, are under the control of the immune system. Differentiation of osteoclasts is mainly regulated by signaling pathways activated by RANK and immune receptors linked to ITAM-harboring adaptors.
View Article and Find Full Text PDFSporulation of the fission yeast Schizosaccharomyces pombe is a developmental process that generates gametes and that includes the formation of spore envelope precursors called the forespore membranes. Assembly and development of forespore membranes require vesicular trafficking from other intracellular membrane compartments. We have shown that phosphatidylinositol 3-kinase (PtdIns 3-kinase) is required for efficient and proper development of forespore membranes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2007
Abnormal T cell immune responses induce aberrant expression of inflammatory cytokines such as TNF-alpha, leading to osteoclastmediated bone erosion and osteoporosis in autoimmune arthritis. However, the mechanism underlying enhanced osteoclastogenesis in arthritis is not completely understood. Here we show that TNF-alpha contributes to inflammatory bone loss by enhancing the osteoclastogenic potential of osteoclast precursor cells through inducing paired Ig-like receptor-A (PIR-A), a costimulatory receptor for receptor activator of NF-kappaB (RANK).
View Article and Find Full Text PDFImmunosuppressants are crucial in the prevention of detrimental immune reactions associated with allogenic organ transplantation, but they often cause adverse effects in a number of biological systems, including the skeletal system. Calcineurin inhibitors FK506 and cyclosporin A inhibit nuclear factor of activated T cells (NFAT) activity and induce strong immunosuppression. Among NFAT proteins, NFATc1 is crucial for the differentiation of bone-resorbing osteoclasts.
View Article and Find Full Text PDFRANK and CD40 activate NF-kappaB and MAPKs to similar levels via TRAF6. Even though overexpression of TRAF6 results in osteoclast formation, RANK but not CD40 promotes osteoclastogenesis. To understand the molecular basis for RANK-specific activity in osteoclastogenesis, we created an osteoclast formation system driven by anti-human CD40 antibody-mediated stimulation of a chimeric receptor, h40/mRK, which consists of the extracellular domain of human CD40 and the transmembrane and cytoplasmic domains of mouse RANK.
View Article and Find Full Text PDFSignal transducer and activator of transcription 1 (Stat1) is a critical mediator of gene transcription in type I interferon (IFN-alpha/beta) signaling that is essential for host defense against viruses. In the skeletal system, type I IFNs (IFN-alpha/beta) also play an important physiological role in the inhibition of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast differentiation and bone resorption: mice deficient in IFN signaling exhibit decreased bone mass accompanied by the activation of osteoclastogenesis. On the other hand, an unexpected increase in bone mass was observed in Stat1-deficient mice, indicating that Stat1 has a hitherto unknown function in the regulation of bone formation.
View Article and Find Full Text PDFSchizosaccharomyces pombe defective in phosphatidylinositol (PtdIns) 3-kinase shows various defects in forespore membrane formation, including onset, growth orientation, and closure. Downstream factors of PtdIns 3-kinase in this system were explored. Among various phox homology (PX) domain-containing proteins, Vps5p and Vps17p, homologues of sorting nexins, were found to be required for efficient sporulation.
View Article and Find Full Text PDFCostimulatory signals are required for activation of immune cells, but it is not known whether they contribute to other biological systems. The development and homeostasis of the skeletal system depend on the balance between bone formation and resorption. Receptor activator of NF-kappaB ligand (RANKL) regulates the differentiation of bone-resorbing cells, osteoclasts, in the presence of macrophage-colony stimulating factor (M-CSF).
View Article and Find Full Text PDFObjective: Suppression of bone destruction is required as part of an effective therapeutic strategy for autoimmune arthritis. Although numerous antirheumatic drugs are in clinical use, little is known about whether they inhibit bone destruction by acting on activated T cells or other cell types, such as bone-resorbing osteoclasts. This study was undertaken to determine whether leflunomide has a direct action on the osteoclast lineage and to gain insights into the molecular basis for the bone-protective effect of leflunomide.
View Article and Find Full Text PDFThe ste12+ gene of Schizosaccharomyces pombe codes for a phosphatidylinositol (PI) 3-phosphate 5'-kinase, which is required for efficient mating. Suppressor mutants for sterility of ste12Delta cells were screened for. Most of the mutant genes turned out to be recessive.
View Article and Find Full Text PDFBone remodeling is central to maintaining the integrity of the skeletal system, wherein the developed bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption. In the present study, we demonstrate a novel function of the Stat1 transcription factor in the regulation of bone remodeling. In the bone of the Stat1-deficient mice, excessive osteoclastogenesis is observed, presumably caused by a loss of negative regulation of osteoclast differentiation by interferon (IFN)-beta.
View Article and Find Full Text PDFFrom the fission yeast Schizosaccharomyces pombe we have identified and deleted vps33, a gene encoding a homologue of VPS33, which is required for vacuolar biogenesis in S. cerevisiae cells. When the vps33(+) gene is disrupted, Sz.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
May 2003
In Schizosaccharomyces pombe, Pik3p phosphorylates phosphatidylinositol (PI) to produce PI 3-P, which is further phosphorylated by Ste12p to yield PI 3,5-P2. Pik3p is required for both conjugation and sporulation. To test which of PI 3-P and PI 3,5-P2 is required for sporulation, diploid cells defective in production of PI 3,5-P2 were used.
View Article and Find Full Text PDFPhosphatidylinositol (PI) 3-kinase (encoded by the pik3(+) gene) in Schizosaccharomyces pombe has been identified as a homologue of VPS34p, a protein required for proper vesicular protein sorting. The clone defective in this protein carries enlarged vacuoles and exhibits sensitivity to high temperature or high ion concentration. The effect of disruption of pik3(+) on sporulation of Sz.
View Article and Find Full Text PDFSignaling by RANKL is essential for terminal differentiation of monocytes/macrophages into osteoclasts. The TRAF6 and c-Fos signaling pathways both play important roles downstream of RANKL. We show here that RANKL selectively induces NFATc1 expression via these two pathways.
View Article and Find Full Text PDFBackground: Phosphatidylinositol (3,5) bisphosphate, which is converted from phosphatidylinositol 3-phosphate by phosphatidylinositol 3-phosphate 5-kinase, is implicated in vacuolar functions and the sorting of cell surface proteins within endosomes in the endocytic pathway of budding yeast. A homologous protein, SpFab1p, has been found in the fission yeast Schizosaccharomyces pombe, but its role is not known.
Results: Here we report that SpFab1p is encoded by ste12+ known as a fertility gene in S.