Various studies on immobilized BALB/c mice to evaluate changes in hormone levels associated with stress responses have advanced the characterization of multiple aspects of the biological actions of extremely low-frequency (ELF) electric fields (EFs). In this study, we aimed to investigate the effect of mouse posture on its stress responses and evaluate the importance of adjusting the stress degree in the model. Mice were immobilized inside centrifuge tubes and exposed to an ELF EF generated between parallel plate electrodes.
View Article and Find Full Text PDFIn BALB/c mice, immobilization-increased plasma glucocorticoid (GC) levels are suppressed by extremely low frequency (ELF) electric fields (EF). The aim of this study was to advance our understanding of the biological effects of ELF-EF, using its suppressive effect on the GC response. Mice were exposed to a 50 Hz EF of 10 kV/m via a parallel plate electrode and immobilized as needed.
View Article and Find Full Text PDFAlthough electric fields (EF) exert beneficial effects on animal wound healing, differentiation, cancers and rheumatoid arthritis, the molecular mechanisms of these effects have remained unclear about a half century. Therefore, we aimed to elucidate the molecular mechanisms underlying EF effects in Drosophila melanogaster as a genetic animal model. Here we show that the sleep quality of wild type (WT) flies was improved by exposure to a 50-Hz (35 kV/m) constant electric field during the day time, but not during the night time.
View Article and Find Full Text PDFBackground/aim: We investigated the effect of Kumaizasa leaf extract (KLE) on innate immunity using the HEK293 and RAW 264.7 cell lines.
Materials And Methods: KLE, lipopolysaccharides (LPS), or KLE with LPS were added to RAW 264.
Although extremely low-frequency electric fields (ELF-EF) have been utilised for therapeutic purposes, the biological effect and the underlying mechanism of ELF-EF have not been elucidated. Here, we developed a mouse model of immobilisation-induced increase in glucocorticoid (GC) to evaluate the effect of ELF-EF. Mice were exposed to 50-Hz 10 kV/m EF via a parallel plate electrode and immobilised as needed.
View Article and Find Full Text PDFAim: The present study aimed to examine whether heart rate variability (HRV) indices in depressed patients measured at return to work after sick leave are related to the outcome of reinstatement.
Methods: This study included 30 workers who took a leave of absence due to major depressive disorder. HRV was measured twice, once when participants left work and another when they returned to work.
We developed an experimental system to characterize the suppressive effect of extremely low-frequency (ELF) electric fields (EFs) on the stress response. We assessed differences in the EF effects by age and gender. Control, EF-alone, immobilization-alone, and co-treated groups were subjected to an EF (50 Hz, 10 kV/m).
View Article and Find Full Text PDFWe recently suggested that an increase in the plasma glucocorticoid (GC) level in immobilized mice is suppressed by a 50-Hz electric field (EF) in an EF strength-dependent manner. The present study aimed to assess the anti-stress effect of EFs in three scenarios: exposure to an EF of either 50 or 60 Hz, which are the standard power frequencies in most regions; varying levels of environmental brightness during EF exposure; complete or partial shielding of the mouse from the EF. We compared the GC levels and blood parameters among control, EF-alone, immobilization-alone, and co-treatment groups.
View Article and Find Full Text PDFThe aim of the present study was to estimate whether rat sense exogenous electric field (EF) including one used in our previous studies. Employing a conditioned place aversion response paradigm based on an aversive behavior against light environment, alteration in both voluntary behavior of Wistar rat to a 50 Hz sinusoidal EF was examined. Following conditioning without EF, the times spent in white place in rats was significantly shortened (P<0.
View Article and Find Full Text PDF