Publications by authors named "Takaki Hatsui"

SiO2 aggregates in styrene-butadiene rubber (SBR) were observed using ptychographic X-ray computed tomography (PXCT). The rubber composites were illuminated with X-rays focused by total reflection focusing mirrors, and the ptychographic diffraction patterns were collected using a CITIUS detector in the range of -75° to +75° angle of incidence. The projection images of the rubber composites were reconstructed with a two-dimensional resolution of 76 nm, and no significant structural changes were observed during the PXCT measurements.

View Article and Find Full Text PDF

We developed a novel quasielastic scattering spectroscopy system that uses a multiline frequency comblike resolution function to overcome the limit on the accessible timescale imposed by the inherent single-energy resolution of conventional spectroscopy systems. The new multiline system possesses multiple resolutions and can efficiently cover a wide time range, from 100 ps to 100 ns, where x-ray-based dynamic measurement techniques are being actively developed. It enables visualization of the relaxation shape and wave-number-dependent dynamic behavior using a two-dimensional detector, as demonstrated for the natural polymer polybutadine without deuteration.

View Article and Find Full Text PDF

The demand for powder X-ray diffraction analysis continues to increase in a variety of scientific fields, as the excellent beam quality of high-brightness synchrotron light sources enables the acquisition of high-quality measurement data with high intensity and angular resolution. Synchrotron powder diffraction has enabled the rapid measurement of many samples and various in situ/operando experiments in nonambient sample environments. To meet the demands for even higher throughput measurements using high-energy X-rays at SPring-8, a high-throughput and high-resolution powder diffraction system has been developed.

View Article and Find Full Text PDF

Count-loss characteristics of photon-counting 2D detectors are demonstrated for eight bunch-modes at SPring-8 through Monte Carlo simulations. As an indicator, the effective maximum count rate was introduced to signify the X-ray intensity that the detector can count with a linearity of 1% or better after applying a count-loss correction in each bunch-mode. The effective maximum count rate is revealed to vary depending on the bunch-mode and the intrinsic dead time of the detectors, ranging from 0.

View Article and Find Full Text PDF
Article Synopsis
  • Photosystem II (PSII) initiates water oxidation through a four-step cycle involving S states (i=0-4) at a manganese-calcium-oxygen (MnCaO) cluster, ultimately leading to oxygen production.
  • Employing pump-probe serial femtosecond crystallography, the study tracks structural changes in PSII from nanoseconds to milliseconds following illumination, highlighting rapid dynamics of a tyrosine residue and surrounding molecules connected to the electron transfer process.
  • A notable finding includes the appearance and subsequent disappearance of a water molecule near the D1 subunit’s Glu189, indicating its role in forming the O6 oxygen during this fast-paced electron and proton transfer sequence.
View Article and Find Full Text PDF

The CITIUS detector is a next-generation high-speed X-ray imaging detector. It has integrating-type pixels and is designed to show a consistent linear response at a frame rate of 17.4 kHz, which results in a saturation count rate of over 30 Mcps pixel when operating at an acquisition duty cycle close to 100%, and up to 20 times higher with special extended acquisition modes.

View Article and Find Full Text PDF

Ptychographic coherent diffraction imaging (PCDI) is a synchrotron X-ray microscopy technique that provides high spatial resolution and a wide field of view. To improve the performance of PCDI, the performance of the synchrotron radiation source and imaging detector should be improved. In this study, ptychographic diffraction pattern measurements using the CITIUS high-speed X-ray image detector and the corresponding image reconstruction are reported.

View Article and Find Full Text PDF
Article Synopsis
  • Adhesion is crucial for maintaining the lightweight and high-stiffness properties of carbon fiber reinforced polymers (CFRP), yet the lack of molecular understanding limits its reliability in aerospace and automotive applications.
  • Researchers analyzed the chemical state at the interface of an epoxy-based adhesive film and the CF matrix using soft X-ray microscopy, revealing diminished OH-related signals indicating local chemical interactions.
  • The study identified nitrogen and oxygen-containing functional groups on the CF surface, providing insights into the molecular-level mechanisms of adhesion at the CF-matrix/adhesive interface.
View Article and Find Full Text PDF

Ptychographic coherent diffraction imaging (CDI) allows the visualization of both the structure and chemical state of materials on the nanoscale, and has been developed for use in the soft and hard X-ray regions. In this study, a ptychographic CDI system with pinhole or Fresnel zone-plate optics for use in the tender X-ray region (2-5 keV) was developed on beamline BL27SU at SPring-8, in which high-precision pinholes optimized for the tender energy range were used to obtain diffraction intensity patterns with a low background, and a temperature stabilization system was developed to reduce the drift of the sample position. A ptychography measurement of a 200 nm thick tantalum test chart was performed at an incident X-ray energy of 2.

View Article and Find Full Text PDF

A scanning soft X-ray spectromicroscope was recently developed based mainly on the photon-in/photon-out measurement scheme for the investigation of local electronic structures on the surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere. The apparatus was installed at the soft X-ray beamline (BL17SU) at SPring-8. The characteristic features of the apparatus are described in detail.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on improving methods to reconstruct the structure of nanoscale samples using coherent diffractive imaging with X-ray free-electron lasers, even when the quality of the diffraction data is low.
  • A new refinement method is introduced that uses a gradient search technique, which takes into account gaps in the diffraction patterns and limited photon detection, enhancing convergence by starting with an initial structure estimate.
  • The method was successfully applied to experimental data from an Xe cluster at the SACLA facility, demonstrating effective reconstruction of electron density from challenging diffraction patterns, thereby aiding in the analysis of samples with low scattering power.
View Article and Find Full Text PDF

Femtosecond laser pulses have opened new frontiers for the study of ultrafast phase transitions and nonequilibrium states of matter. In this Letter, we report on structural dynamics in atomic clusters pumped with intense near-infrared (NIR) pulses into a nanoplasma state. Employing wide-angle scattering with intense femtosecond x-ray pulses from a free-electron laser source, we find that highly excited xenon nanoparticles retain their crystalline bulk structure and density in the inner core long after the driving NIR pulse.

View Article and Find Full Text PDF

An unbiased approach to correct X-ray response non-uniformity in microstrip detectors has been developed based on the statistical estimation that the scattering intensity at a fixed angle from an object is expected to be constant within the Poisson noise. Raw scattering data of SiO glass measured by a microstrip detector module was found to show an accuracy of 12σ at an intensity of 10 photons, where σ is the standard deviation according to the Poisson noise. The conventional flat-field calibration has failed in correcting the data, whereas the alternative approach used in this article successfully improved the accuracy from 12σ to 2σ.

View Article and Find Full Text PDF

A high-resolution lens-coupled X-ray imaging detector equipped with a thin-layer transparent ceramics scintillator has been developed. The scintillator consists of a 5 μm thick Ce-doped LuAlO layer (LuAG:Ce) bonded onto the support substrate of the non-doped LuAG ceramics by using a solid-state diffusion technique. Secondary electron microscopy of the bonded interface indicated that the crystal grains were densely packed without any pores in the optical wavelength scale, indicating a quasi-uniform refractive index across the interface.

View Article and Find Full Text PDF

We show how to improve microfocus X-ray radiography by using the SOPHIAS silicon-on-insulator pixel detector in conjunction with an amplitude grating. Single-exposure multi-energy absorption and differential phase contrast imaging was performed using the single amplitude grating method. The sensitivity in differential phase contrast imaging in a two-pixel-pitch setup was enhanced by 39% in comparison with the previously reported method [Rev.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers achieved 3D coherent diffractive imaging (CDI) of gold/platinum core-shell nanoparticles with a high spatial resolution of 6.1 nm and noted elemental specificity.
  • Using intense x-ray free electron laser pulses, they reconstructed the 3D electron density of 34 nanoparticle structures from single-shot diffraction patterns.
  • They implemented a super-resolution technique, allowing them to accurately determine the sizes of the Au core and Pd shell, along with a 3D elemental distribution measurement within the nanoparticles, and validated this approach through simulations of noisy diffraction patterns.
View Article and Find Full Text PDF

X-ray free-electron laser (XFEL) pulses from SPring-8 Ångstrom Compact free-electron LAser (SACLA) with a temporal duration of <10 fs have provided a variety of benefits in scientific research. In a previous study, an arrival-timing monitor was developed to improve the temporal resolution in pump-probe experiments at beamline 3 by rearranging data in the order of the arrival-timing jitter between the XFEL and the synchronized optical laser pulses. This paper presents Timing Monitor Analyzer (TMA), a software package by which users can conveniently obtain arrival-timing data in the analysis environment at SACLA.

View Article and Find Full Text PDF

Orexin peptides in the brain regulate physiological functions such as the sleep-wake cycle, and are thus drug targets for the treatment of insomnia. Using serial femtosecond crystallography and multi-crystal data collection with a synchrotron light source, we determined structures of human orexin 2 receptor in complex with the subtype-selective antagonist EMPA (N-ethyl-2-[(6-methoxy-pyridin-3-yl)-(toluene-2-sulfonyl)-amino]-N-pyridin-3-ylmethyl-acetamide) at 2.30-Å and 1.

View Article and Find Full Text PDF

Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) holds enormous potential for the structure determination of proteins for which it is difficult to produce large and high-quality crystals. SFX has been applied to various systems, but rarely to proteins that have previously unknown structures. Consequently, the majority of previously obtained SFX structures have been solved by the molecular replacement method.

View Article and Find Full Text PDF

X-ray free-electron lasers (XFELs) have opened new opportunities for time-resolved X-ray crystallography. Here a nanosecond optical-pump XFEL-probe device developed for time-resolved serial femtosecond crystallography (TR-SFX) studies of photo-induced reactions in proteins at the SPring-8 Angstrom Compact free-electron LAser (SACLA) is reported. The optical-fiber-based system is a good choice for a quick setup in a limited beam time and allows pump illumination from two directions to achieve high excitation efficiency of protein microcrystals.

View Article and Find Full Text PDF
Article Synopsis
  • Serial femtosecond crystallography (SFX) uses X-ray free-electron lasers to analyze proteins from many microcrystals at room temperature, offering insights for pharmaceutical applications.
  • A ligand-soaking experiment with thermolysin microcrystals succeeded in obtaining a protein-ligand complex structure, with consistent results from both oil-based and water-based crystal carriers.
  • Comparisons between SFX and conventional synchrotron radiation (SR) revealed distinct differences in parameters like unit-cell dimensions, side-chain conformations, water coordination, and ligand binding modes.
View Article and Find Full Text PDF

Serial femtosecond crystallography (SFX) allows structures of proteins to be determined at room temperature with minimal radiation damage. A highly viscous matrix acts as a crystal carrier for serial sample loading at a low flow rate that enables the determination of the structure, while requiring consumption of less than 1 mg of the sample. However, a reliable and versatile carrier matrix for a wide variety of protein samples is still elusive.

View Article and Find Full Text PDF

Atomic resolution structures (beyond 1.20 Å) at ambient temperature, which is usually hampered by the radiation damage in synchrotron X-ray crystallography (SRX), will add to our understanding of the structure-function relationships of enzymes. Serial femtosecond crystallography (SFX) has attracted surging interest by providing a route to bypass such challenges.

View Article and Find Full Text PDF

Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.

View Article and Find Full Text PDF

Bacteriorhodopsin (bR) is a light-driven proton pump and a model membrane transport protein. We used time-resolved serial femtosecond crystallography at an x-ray free electron laser to visualize conformational changes in bR from nanoseconds to milliseconds following photoactivation. An initially twisted retinal chromophore displaces a conserved tryptophan residue of transmembrane helix F on the cytoplasmic side of the protein while dislodging a key water molecule on the extracellular side.

View Article and Find Full Text PDF