Publications by authors named "Takahito Kaihara"

On-surface synthesis is of importance to fabricate low dimensional carbon-based nanomaterials with atomic precision. Here, we synthesize nitrogen-doped nanographene with an [18]annulene pore and its dimer through sequential reactions of debromination, aryl-aryl coupling, cyclodehydrogenation and C-N coupling on Ag(111) from 3,12-dibromo-7,8-diaza[5]helicene. The inner structures of the products were characterized with scanning tunneling microscopy with a CO terminated tip at low temperature.

View Article and Find Full Text PDF

A dual-photofunctional organogermanium compound based on a donor-acceptor-donor architecture that exhibits thermally activated delayed fluorescence and mechano-responsive luminochromism has been developed. The developed compound was successfully applied as an emitter for efficient organic light-emitting diodes.

View Article and Find Full Text PDF

Novel electron donor-acceptor-donor (D-A-D) compounds comprising dibenzo[a,j]phenazine as the central acceptor core and two 7-membered diarylamines (iminodibenzyl and iminostilbene) as the donors have been designed and synthesized. Investigation of their physicochemical properties revealed the impact of C insertion into well-known carbazole electron donors on the properties of previously reported twisted dibenzo[a,j]phenazine-core D-A-D triads. Slight structural modification caused a drastic change in conformational preference, allowing unique photophysical behavior of dual emission derived from room-temperature phosphorescence and triplet-triplet annihilation.

View Article and Find Full Text PDF

A novel twisted donor-acceptor-donor (D-A-D) π-conjugated compound that contains flexible and moderately-electron-donating units has been designed and synthesized. It exhibited not only multi-color-changing mechanochromic luminescence and thermally activated delayed fluorescence, but also, unexpectedly, room-temperature phosphorescence in a host layer.

View Article and Find Full Text PDF