Publications by authors named "Takahisa Okubo"

Adipose tissue is composed mostly of adipocytes that are in contact with capillaries. By using a ceiling culture method based on buoyancy, lipid-free fibroblast-like cells, also known as dedifferentiated fat (DFAT) cells, can be separated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and transdifferentiate into various cell types under appropriate culture conditions.

View Article and Find Full Text PDF

Titanium implants undergo temperature fluctuations during manufacturing, transport, and storage. However, it is unknown how this affects their bioactivity. Herein, we explored how storage (six months, dark conditions) and temperature fluctuations (5-50 °C) affected the bioactivity of titanium implants.

View Article and Find Full Text PDF

Biomimetic design provides novel opportunities for enhancing and functionalizing biomaterials. Here we created a zirconia surface with cactus-inspired meso-scale spikes and bone-inspired nano-scale trabecular architecture and examined its biological activity in bone generation and integration. Crisscrossing laser etching successfully engraved 60 μm wide, cactus-inspired spikes on yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with 200-300 nm trabecular bone-inspired interwoven structures on the entire surface.

View Article and Find Full Text PDF

Titanium-based implant abutments and tissue bars are polished during the finalization. We hypothesized that polishing degrades the bioactivity of titanium, and, if this is the case, photofunctionalization-grade UV treatment can alleviate the adverse effect. Three groups of titanium disks were prepared; machined surface, polished surface and polished surface followed by UV treatment (polished/UV surface).

View Article and Find Full Text PDF

Poly(methyl methacrylate) (PMMA)-based bone cement, which is widely used to affix orthopedic metallic implants, is considered bio-tolerant but lacks osteoconductivity and is cytotoxic. Implant loosening and toxic complications are significant and recognized problems. Here we devised two strategies to improve PMMA-based bone cement: (1) adding 4-methacryloyloxylethyl trimellitate anhydride (4-META) to MMA monomer to render it hydrophilic; and (2) using tri-n-butyl borane (TBB) as a polymerization initiator instead of benzoyl peroxide (BPO) to reduce free radical production.

View Article and Find Full Text PDF

Effects of UV-photofunctionalization on bone-to-titanium integration under challenging systemic conditions remain unclear. We examined the behavior and response of osteoblasts from sham-operated and ovariectomized (OVX) rats on titanium surfaces with or without UV light pre-treatment and the strength of bone-implant integration. Osteoblasts from OVX rats showed significantly lower alkaline phosphatase, osteogenic gene expression, and mineralization activities than those from sham rats.

View Article and Find Full Text PDF

Titanium micro-scale topography offers excellent osteoconductivity and bone-implant integration. However, the biological effects of sub-micron topography are unknown. We compared osteoblastic phenotypes and in vivo bone and implant integration abilities between titanium surfaces with micro- (1-5 µm) and sub-micro-scale (0.

View Article and Find Full Text PDF

Titanium mesh plate (Ti mesh) used for bone augmentation inadvertently comes into contact with medical gloves during trimming and bending. We tested the hypotheses that glove contact degrades the biological capability of Ti mesh and that ultraviolet treatment (UV) can restore this capability. Three groups of Ti mesh specimens were prepared: as-received (AR), after glove contact (GC), and after glove contact followed by UV treatment.

View Article and Find Full Text PDF

Purpose: Zirconia is a potential alternative to titanium for dental and orthopedic implants. Here we report the biological and bone integration capabilities of a new zirconia surface with distinct morphology at the meso-, micro-, and nano-scales.

Methods: Machine-smooth and roughened zirconia disks were prepared from yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), with rough zirconia created by solid-state laser sculpting.

View Article and Find Full Text PDF