Activation of pyruvate dehydrogenase (PDH) by inhibition of pyruvate dehydrogenase kinase (PDHK) has the potential for the treatment of diabetes mellitus and its complications, caused by the malfunction of the glycolytic system and glucose oxidation. In this paper, we describe the identification of novel PDHK inhibitors with a fluorene structure. High-throughput screening using our in-house library provided compound 6 as a weak inhibitor that occupied the allosteric lipoyl group binding site in PDHK2.
View Article and Find Full Text PDFIn research focused on protein-protein interaction (PPI) inhibitors, the optimization process to achieve both high inhibitory activity and favorable physicochemical properties remains challenging. Our previous study reported the discovery of novel and bioavailable Keap1-Nrf2 PPI inhibitor which exhibited moderate in vivo activity in rats. In this work, we present our subsequent efforts to optimize this compound.
View Article and Find Full Text PDFOxidative stress is one of the causes of progression of chronic kidney disease (CKD). Activation of the antioxidant protein regulator Nrf2 by inhibition of the Keap1-Nrf2 protein-protein interaction (PPI) is of interest as a potential treatment for CKD. We report the identification of the novel and weak PPI inhibitor with good physical properties by a high throughput screening (HTS) campaign, followed by structural and computational analysis.
View Article and Find Full Text PDFPharmacokinetic research plays an important role in the development of new drugs. Accurate predictions of human pharmacokinetic parameters are essential for the success of clinical trials. Clearance (CL) and volume of distribution (Vd) are important factors for evaluating pharmacokinetic properties, and many previous studies have attempted to use computational methods to extrapolate these values from nonclinical laboratory animal models to human subjects.
View Article and Find Full Text PDFPyruvate dehydrogenase kinases (PDHKs) are fascinating drug targets for numerous diseases, including diabetes and cancers. In this report, we describe the result of our structure-based drug design from tricyclic lead compounds that led to the discovery of highly potent PDHK2 and PDHK4 dual inhibitors in enzymatic assay. The C3-position of the tricyclic core was explored, and the PDHK2 X-ray structure with a representative compound revealed a novel ATP lid conformation in which the phenyl ring of Phe326 mediated the interaction of the Arg258 sidechain and the compound.
View Article and Find Full Text PDFResearch into pharmacokinetics plays an important role in the development process of new drugs. Accurately predicting human pharmacokinetic parameters from preclinical data can increase the success rate of clinical trials. Since clearance (CL) which indicates the capacity of the entire body to process a drug is one of the most important parameters, many methods have been developed.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV-1) integrase is a crucial target for antiretroviral drugs, and several keto-enol acid class (often referred to as diketo acid class) inhibitors have clinically exhibited marked antiretroviral activity. Here, we show the synthesis and the detailed structure-activity relationship of the quinolone carboxylic acids as a novel monoketo acid class of integrase inhibitors. 6-(3-Chloro-2-fluorobenzyl)-1-((2S)-1-hydroxy-3,3-dimethylbutan-2-yl)-7-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 51, which showed an IC50 of 5.
View Article and Find Full Text PDFThe viral enzyme integrase is essential for the replication of human immunodeficiency virus type 1 (HIV-1) and represents a remaining target for antiretroviral drugs. Here, we describe the modification of a quinolone antibiotic to produce the novel integrase inhibitor JTK-303 (GS 9137) that blocks strand transfer by the viral enzyme. It shares the core structure of quinolone antibiotics, exhibits an IC50 of 7.
View Article and Find Full Text PDF